Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, GPL-3.0 license | |
from ultralytics.yolo.data import build_classification_dataloader | |
from ultralytics.yolo.engine.validator import BaseValidator | |
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER | |
from ultralytics.yolo.utils.metrics import ClassifyMetrics | |
class ClassificationValidator(BaseValidator): | |
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None): | |
super().__init__(dataloader, save_dir, pbar, args) | |
self.args.task = 'classify' | |
self.metrics = ClassifyMetrics() | |
def get_desc(self): | |
return ('%22s' + '%11s' * 2) % ('classes', 'top1_acc', 'top5_acc') | |
def init_metrics(self, model): | |
self.pred = [] | |
self.targets = [] | |
def preprocess(self, batch): | |
batch['img'] = batch['img'].to(self.device, non_blocking=True) | |
batch['img'] = batch['img'].half() if self.args.half else batch['img'].float() | |
batch['cls'] = batch['cls'].to(self.device) | |
return batch | |
def update_metrics(self, preds, batch): | |
n5 = min(len(self.model.names), 5) | |
self.pred.append(preds.argsort(1, descending=True)[:, :n5]) | |
self.targets.append(batch['cls']) | |
def finalize_metrics(self, *args, **kwargs): | |
self.metrics.speed = self.speed | |
# self.metrics.confusion_matrix = self.confusion_matrix # TODO: classification ConfusionMatrix | |
def get_stats(self): | |
self.metrics.process(self.targets, self.pred) | |
return self.metrics.results_dict | |
def get_dataloader(self, dataset_path, batch_size): | |
return build_classification_dataloader(path=dataset_path, | |
imgsz=self.args.imgsz, | |
batch_size=batch_size, | |
augment=False, | |
shuffle=False, | |
workers=self.args.workers) | |
def print_results(self): | |
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format | |
LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5)) | |
def val(cfg=DEFAULT_CFG, use_python=False): | |
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" | |
data = cfg.data or 'mnist160' | |
args = dict(model=model, data=data) | |
if use_python: | |
from ultralytics import YOLO | |
YOLO(model).val(**args) | |
else: | |
validator = ClassificationValidator(args=args) | |
validator(model=args['model']) | |
if __name__ == '__main__': | |
val() | |