Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, GPL-3.0 license | |
import torch | |
import torchvision | |
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight | |
from ultralytics.yolo import v8 | |
from ultralytics.yolo.data import build_classification_dataloader | |
from ultralytics.yolo.engine.trainer import BaseTrainer | |
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, colorstr | |
from ultralytics.yolo.utils.torch_utils import is_parallel, strip_optimizer | |
class ClassificationTrainer(BaseTrainer): | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None): | |
if overrides is None: | |
overrides = {} | |
overrides['task'] = 'classify' | |
super().__init__(cfg, overrides) | |
def set_model_attributes(self): | |
self.model.names = self.data['names'] | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
model = ClassificationModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1) | |
if weights: | |
model.load(weights) | |
pretrained = False | |
for m in model.modules(): | |
if not pretrained and hasattr(m, 'reset_parameters'): | |
m.reset_parameters() | |
if isinstance(m, torch.nn.Dropout) and self.args.dropout: | |
m.p = self.args.dropout # set dropout | |
for p in model.parameters(): | |
p.requires_grad = True # for training | |
# Update defaults | |
if self.args.imgsz == 640: | |
self.args.imgsz = 224 | |
return model | |
def setup_model(self): | |
""" | |
load/create/download model for any task | |
""" | |
# classification models require special handling | |
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed | |
return | |
model = str(self.model) | |
# Load a YOLO model locally, from torchvision, or from Ultralytics assets | |
if model.endswith('.pt'): | |
self.model, _ = attempt_load_one_weight(model, device='cpu') | |
for p in self.model.parameters(): | |
p.requires_grad = True # for training | |
elif model.endswith('.yaml'): | |
self.model = self.get_model(cfg=model) | |
elif model in torchvision.models.__dict__: | |
pretrained = True | |
self.model = torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if pretrained else None) | |
else: | |
FileNotFoundError(f'ERROR: model={model} not found locally or online. Please check model name.') | |
ClassificationModel.reshape_outputs(self.model, self.data['nc']) | |
return # dont return ckpt. Classification doesn't support resume | |
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'): | |
loader = build_classification_dataloader(path=dataset_path, | |
imgsz=self.args.imgsz, | |
batch_size=batch_size if mode == 'train' else (batch_size * 2), | |
augment=mode == 'train', | |
rank=rank, | |
workers=self.args.workers) | |
# Attach inference transforms | |
if mode != 'train': | |
if is_parallel(self.model): | |
self.model.module.transforms = loader.dataset.torch_transforms | |
else: | |
self.model.transforms = loader.dataset.torch_transforms | |
return loader | |
def preprocess_batch(self, batch): | |
batch['img'] = batch['img'].to(self.device) | |
batch['cls'] = batch['cls'].to(self.device) | |
return batch | |
def progress_string(self): | |
return ('\n' + '%11s' * (4 + len(self.loss_names))) % \ | |
('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size') | |
def get_validator(self): | |
self.loss_names = ['loss'] | |
return v8.classify.ClassificationValidator(self.test_loader, self.save_dir) | |
def criterion(self, preds, batch): | |
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / self.args.nbs | |
loss_items = loss.detach() | |
return loss, loss_items | |
# def label_loss_items(self, loss_items=None, prefix="train"): | |
# """ | |
# Returns a loss dict with labelled training loss items tensor | |
# """ | |
# # Not needed for classification but necessary for segmentation & detection | |
# keys = [f"{prefix}/{x}" for x in self.loss_names] | |
# if loss_items is not None: | |
# loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats | |
# return dict(zip(keys, loss_items)) | |
# else: | |
# return keys | |
def label_loss_items(self, loss_items=None, prefix='train'): | |
""" | |
Returns a loss dict with labelled training loss items tensor | |
""" | |
# Not needed for classification but necessary for segmentation & detection | |
keys = [f'{prefix}/{x}' for x in self.loss_names] | |
if loss_items is None: | |
return keys | |
loss_items = [round(float(loss_items), 5)] | |
return dict(zip(keys, loss_items)) | |
def resume_training(self, ckpt): | |
pass | |
def final_eval(self): | |
for f in self.last, self.best: | |
if f.exists(): | |
strip_optimizer(f) # strip optimizers | |
# TODO: validate best.pt after training completes | |
# if f is self.best: | |
# LOGGER.info(f'\nValidating {f}...') | |
# self.validator.args.save_json = True | |
# self.metrics = self.validator(model=f) | |
# self.metrics.pop('fitness', None) | |
# self.run_callbacks('on_fit_epoch_end') | |
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}") | |
def train(cfg=DEFAULT_CFG, use_python=False): | |
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" | |
data = cfg.data or 'mnist160' # or yolo.ClassificationDataset("mnist") | |
device = cfg.device if cfg.device is not None else '' | |
args = dict(model=model, data=data, device=device) | |
if use_python: | |
from ultralytics import YOLO | |
YOLO(model).train(**args) | |
else: | |
trainer = ClassificationTrainer(overrides=args) | |
trainer.train() | |
if __name__ == '__main__': | |
train() | |