Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, GPL-3.0 license | |
import json | |
from time import time | |
from ultralytics.hub.utils import PREFIX, traces | |
from ultralytics.yolo.utils import LOGGER | |
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params | |
def on_pretrain_routine_end(trainer): | |
session = getattr(trainer, 'hub_session', None) | |
if session: | |
# Start timer for upload rate limit | |
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} π') | |
session.timers = {'metrics': time(), 'ckpt': time()} # start timer on session.rate_limit | |
def on_fit_epoch_end(trainer): | |
session = getattr(trainer, 'hub_session', None) | |
if session: | |
# Upload metrics after val end | |
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics} | |
if trainer.epoch == 0: | |
model_info = { | |
'model/parameters': get_num_params(trainer.model), | |
'model/GFLOPs': round(get_flops(trainer.model), 3), | |
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)} | |
all_plots = {**all_plots, **model_info} | |
session.metrics_queue[trainer.epoch] = json.dumps(all_plots) | |
if time() - session.timers['metrics'] > session.rate_limits['metrics']: | |
session.upload_metrics() | |
session.timers['metrics'] = time() # reset timer | |
session.metrics_queue = {} # reset queue | |
def on_model_save(trainer): | |
session = getattr(trainer, 'hub_session', None) | |
if session: | |
# Upload checkpoints with rate limiting | |
is_best = trainer.best_fitness == trainer.fitness | |
if time() - session.timers['ckpt'] > session.rate_limits['ckpt']: | |
LOGGER.info(f'{PREFIX}Uploading checkpoint {session.model_id}') | |
session.upload_model(trainer.epoch, trainer.last, is_best) | |
session.timers['ckpt'] = time() # reset timer | |
def on_train_end(trainer): | |
session = getattr(trainer, 'hub_session', None) | |
if session: | |
# Upload final model and metrics with exponential standoff | |
LOGGER.info(f'{PREFIX}Syncing final model...') | |
session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics.get('metrics/mAP50-95(B)', 0), final=True) | |
session.alive = False # stop heartbeats | |
LOGGER.info(f'{PREFIX}Done β \n' | |
f'{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} π') | |
def on_train_start(trainer): | |
traces(trainer.args, traces_sample_rate=1.0) | |
def on_val_start(validator): | |
traces(validator.args, traces_sample_rate=1.0) | |
def on_predict_start(predictor): | |
traces(predictor.args, traces_sample_rate=1.0) | |
def on_export_start(exporter): | |
traces(exporter.args, traces_sample_rate=1.0) | |
callbacks = { | |
'on_pretrain_routine_end': on_pretrain_routine_end, | |
'on_fit_epoch_end': on_fit_epoch_end, | |
'on_model_save': on_model_save, | |
'on_train_end': on_train_end, | |
'on_train_start': on_train_start, | |
'on_val_start': on_val_start, | |
'on_predict_start': on_predict_start, | |
'on_export_start': on_export_start} | |