Spaces:
Sleeping
Sleeping
# Ultralytics YOLO ๐, GPL-3.0 license | |
""" | |
Ultralytics Results, Boxes and Masks classes for handling inference results | |
Usage: See https://docs.ultralytics.com/modes/predict/ | |
""" | |
from copy import deepcopy | |
from functools import lru_cache | |
import numpy as np | |
import torch | |
import torchvision.transforms.functional as F | |
from ultralytics.yolo.utils import LOGGER, SimpleClass, ops | |
from ultralytics.yolo.utils.plotting import Annotator, colors | |
from ultralytics.yolo.utils.torch_utils import TORCHVISION_0_10 | |
class Results(SimpleClass): | |
""" | |
A class for storing and manipulating inference results. | |
Args: | |
orig_img (numpy.ndarray): The original image as a numpy array. | |
path (str): The path to the image file. | |
names (List[str]): A list of class names. | |
boxes (List[List[float]], optional): A list of bounding box coordinates for each detection. | |
masks (numpy.ndarray, optional): A 3D numpy array of detection masks, where each mask is a binary image. | |
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class. | |
Attributes: | |
orig_img (numpy.ndarray): The original image as a numpy array. | |
orig_shape (tuple): The original image shape in (height, width) format. | |
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes. | |
masks (Masks, optional): A Masks object containing the detection masks. | |
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class. | |
names (List[str]): A list of class names. | |
path (str): The path to the image file. | |
_keys (tuple): A tuple of attribute names for non-empty attributes. | |
""" | |
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None) -> None: | |
self.orig_img = orig_img | |
self.orig_shape = orig_img.shape[:2] | |
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes | |
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks | |
self.probs = probs if probs is not None else None | |
self.names = names | |
self.path = path | |
self._keys = ('boxes', 'masks', 'probs') | |
def pandas(self): | |
pass | |
# TODO masks.pandas + boxes.pandas + cls.pandas | |
def __getitem__(self, idx): | |
r = Results(orig_img=self.orig_img, path=self.path, names=self.names) | |
for k in self.keys: | |
setattr(r, k, getattr(self, k)[idx]) | |
return r | |
def update(self, boxes=None, masks=None, probs=None): | |
if boxes is not None: | |
self.boxes = Boxes(boxes, self.orig_shape) | |
if masks is not None: | |
self.masks = Masks(masks, self.orig_shape) | |
if boxes is not None: | |
self.probs = probs | |
def cpu(self): | |
r = Results(orig_img=self.orig_img, path=self.path, names=self.names) | |
for k in self.keys: | |
setattr(r, k, getattr(self, k).cpu()) | |
return r | |
def numpy(self): | |
r = Results(orig_img=self.orig_img, path=self.path, names=self.names) | |
for k in self.keys: | |
setattr(r, k, getattr(self, k).numpy()) | |
return r | |
def cuda(self): | |
r = Results(orig_img=self.orig_img, path=self.path, names=self.names) | |
for k in self.keys: | |
setattr(r, k, getattr(self, k).cuda()) | |
return r | |
def to(self, *args, **kwargs): | |
r = Results(orig_img=self.orig_img, path=self.path, names=self.names) | |
for k in self.keys: | |
setattr(r, k, getattr(self, k).to(*args, **kwargs)) | |
return r | |
def __len__(self): | |
for k in self.keys: | |
return len(getattr(self, k)) | |
def keys(self): | |
return [k for k in self._keys if getattr(self, k) is not None] | |
def plot(self, show_conf=True, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): | |
""" | |
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image. | |
Args: | |
show_conf (bool): Whether to show the detection confidence score. | |
line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size. | |
font_size (float, optional): The font size of the text. If None, it is scaled to the image size. | |
font (str): The font to use for the text. | |
pil (bool): Whether to return the image as a PIL Image. | |
example (str): An example string to display. Useful for indicating the expected format of the output. | |
Returns: | |
(None) or (PIL.Image): If `pil` is True, a PIL Image is returned. Otherwise, nothing is returned. | |
""" | |
print("IN RESULTS PY") | |
annotator = Annotator(deepcopy(self.orig_img), line_width, font_size, font, pil, example) | |
boxes = self.boxes | |
masks = self.masks | |
probs = self.probs | |
names = self.names | |
hide_labels, hide_conf = False, not show_conf | |
labels = [] | |
if boxes is not None: | |
for d in reversed(boxes): | |
c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item()) | |
name = ('' if id is None else f'id:{id} ') + names[c] | |
label = None if hide_labels else (name if hide_conf else f'{name} {conf:.2f}') | |
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True)) | |
labels.append(label) | |
if masks is not None: | |
im = torch.as_tensor(annotator.im, dtype=torch.float16, device=masks.data.device).permute(2, 0, 1).flip(0) | |
if TORCHVISION_0_10: | |
im = F.resize(im.contiguous(), masks.data.shape[1:], antialias=True) / 255 | |
else: | |
im = F.resize(im.contiguous(), masks.data.shape[1:]) / 255 | |
annotator.masks(masks.data, colors=[colors(x, True) for x in boxes.cls], im_gpu=im) | |
if probs is not None: | |
n5 = min(len(names), 5) | |
top5i = probs.argsort(0, descending=True)[:n5].tolist() # top 5 indices | |
text = f"{', '.join(f'{names[j] if names else j} {probs[j]:.2f}' for j in top5i)}, " | |
annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors | |
return np.asarray(annotator.im) if annotator.pil else annotator.im, labels | |
class Boxes(SimpleClass): | |
""" | |
A class for storing and manipulating detection boxes. | |
Args: | |
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes, | |
with shape (num_boxes, 6). The last two columns should contain confidence and class values. | |
orig_shape (tuple): Original image size, in the format (height, width). | |
Attributes: | |
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes, | |
with shape (num_boxes, 6). | |
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width). | |
is_track (bool): True if the boxes also include track IDs, False otherwise. | |
Properties: | |
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format. | |
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes. | |
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes. | |
id (torch.Tensor) or (numpy.ndarray): The track IDs of the boxes (if available). | |
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format. | |
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size. | |
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size. | |
data (torch.Tensor): The raw bboxes tensor | |
Methods: | |
cpu(): Move the object to CPU memory. | |
numpy(): Convert the object to a numpy array. | |
cuda(): Move the object to CUDA memory. | |
to(*args, **kwargs): Move the object to the specified device. | |
pandas(): Convert the object to a pandas DataFrame (not yet implemented). | |
""" | |
def __init__(self, boxes, orig_shape) -> None: | |
if boxes.ndim == 1: | |
boxes = boxes[None, :] | |
n = boxes.shape[-1] | |
assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls | |
# TODO | |
self.is_track = n == 7 | |
self.boxes = boxes | |
self.orig_shape = torch.as_tensor(orig_shape, device=boxes.device) if isinstance(boxes, torch.Tensor) \ | |
else np.asarray(orig_shape) | |
def xyxy(self): | |
return self.boxes[:, :4] | |
def conf(self): | |
return self.boxes[:, -2] | |
def cls(self): | |
return self.boxes[:, -1] | |
def id(self): | |
return self.boxes[:, -3] if self.is_track else None | |
# maxsize 1 should suffice | |
def xywh(self): | |
return ops.xyxy2xywh(self.xyxy) | |
def xyxyn(self): | |
return self.xyxy / self.orig_shape[[1, 0, 1, 0]] | |
def xywhn(self): | |
return self.xywh / self.orig_shape[[1, 0, 1, 0]] | |
def cpu(self): | |
return Boxes(self.boxes.cpu(), self.orig_shape) | |
def numpy(self): | |
return Boxes(self.boxes.numpy(), self.orig_shape) | |
def cuda(self): | |
return Boxes(self.boxes.cuda(), self.orig_shape) | |
def to(self, *args, **kwargs): | |
return Boxes(self.boxes.to(*args, **kwargs), self.orig_shape) | |
def pandas(self): | |
LOGGER.info('results.pandas() method not yet implemented') | |
def shape(self): | |
return self.boxes.shape | |
def data(self): | |
return self.boxes | |
def __len__(self): # override len(results) | |
return len(self.boxes) | |
def __getitem__(self, idx): | |
return Boxes(self.boxes[idx], self.orig_shape) | |
class Masks(SimpleClass): | |
""" | |
A class for storing and manipulating detection masks. | |
Args: | |
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width). | |
orig_shape (tuple): Original image size, in the format (height, width). | |
Attributes: | |
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width). | |
orig_shape (tuple): Original image size, in the format (height, width). | |
Properties: | |
xy (list): A list of segments (pixels) which includes x, y segments of each detection. | |
xyn (list): A list of segments (normalized) which includes x, y segments of each detection. | |
Methods: | |
cpu(): Returns a copy of the masks tensor on CPU memory. | |
numpy(): Returns a copy of the masks tensor as a numpy array. | |
cuda(): Returns a copy of the masks tensor on GPU memory. | |
to(): Returns a copy of the masks tensor with the specified device and dtype. | |
""" | |
def __init__(self, masks, orig_shape) -> None: | |
self.masks = masks # N, h, w | |
self.orig_shape = orig_shape | |
def segments(self): | |
# Segments-deprecated (normalized) | |
LOGGER.warning("WARNING โ ๏ธ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and " | |
"'Masks.xy' for segments (pixels) instead.") | |
return self.xyn | |
def xyn(self): | |
# Segments (normalized) | |
return [ | |
ops.scale_segments(self.masks.shape[1:], x, self.orig_shape, normalize=True) | |
for x in ops.masks2segments(self.masks)] | |
def xy(self): | |
# Segments (pixels) | |
return [ | |
ops.scale_segments(self.masks.shape[1:], x, self.orig_shape, normalize=False) | |
for x in ops.masks2segments(self.masks)] | |
def shape(self): | |
return self.masks.shape | |
def data(self): | |
return self.masks | |
def cpu(self): | |
return Masks(self.masks.cpu(), self.orig_shape) | |
def numpy(self): | |
return Masks(self.masks.numpy(), self.orig_shape) | |
def cuda(self): | |
return Masks(self.masks.cuda(), self.orig_shape) | |
def to(self, *args, **kwargs): | |
return Masks(self.masks.to(*args, **kwargs), self.orig_shape) | |
def __len__(self): # override len(results) | |
return len(self.masks) | |
def __getitem__(self, idx): | |
return Masks(self.masks[idx], self.orig_shape) | |