Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, GPL-3.0 license | |
from itertools import repeat | |
from multiprocessing.pool import ThreadPool | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import torch | |
import torchvision | |
from tqdm import tqdm | |
from ..utils import LOCAL_RANK, NUM_THREADS, TQDM_BAR_FORMAT, is_dir_writeable | |
from .augment import Compose, Format, Instances, LetterBox, classify_albumentations, classify_transforms, v8_transforms | |
from .base import BaseDataset | |
from .utils import HELP_URL, LOGGER, get_hash, img2label_paths, verify_image_label | |
class YOLODataset(BaseDataset): | |
cache_version = '1.0.2' # dataset labels *.cache version, >= 1.0.0 for YOLOv8 | |
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4] | |
""" | |
Dataset class for loading images object detection and/or segmentation labels in YOLO format. | |
Args: | |
img_path (str): path to the folder containing images. | |
imgsz (int): image size (default: 640). | |
cache (bool): if True, a cache file of the labels is created to speed up future creation of dataset instances | |
(default: False). | |
augment (bool): if True, data augmentation is applied (default: True). | |
hyp (dict): hyperparameters to apply data augmentation (default: None). | |
prefix (str): prefix to print in log messages (default: ''). | |
rect (bool): if True, rectangular training is used (default: False). | |
batch_size (int): size of batches (default: None). | |
stride (int): stride (default: 32). | |
pad (float): padding (default: 0.0). | |
single_cls (bool): if True, single class training is used (default: False). | |
use_segments (bool): if True, segmentation masks are used as labels (default: False). | |
use_keypoints (bool): if True, keypoints are used as labels (default: False). | |
names (list): class names (default: None). | |
Returns: | |
A PyTorch dataset object that can be used for training an object detection or segmentation model. | |
""" | |
def __init__(self, | |
img_path, | |
imgsz=640, | |
cache=False, | |
augment=True, | |
hyp=None, | |
prefix='', | |
rect=False, | |
batch_size=None, | |
stride=32, | |
pad=0.0, | |
single_cls=False, | |
use_segments=False, | |
use_keypoints=False, | |
names=None, | |
classes=None): | |
self.use_segments = use_segments | |
self.use_keypoints = use_keypoints | |
self.names = names | |
assert not (self.use_segments and self.use_keypoints), 'Can not use both segments and keypoints.' | |
super().__init__(img_path, imgsz, cache, augment, hyp, prefix, rect, batch_size, stride, pad, single_cls, | |
classes) | |
def cache_labels(self, path=Path('./labels.cache')): | |
"""Cache dataset labels, check images and read shapes. | |
Args: | |
path (Path): path where to save the cache file (default: Path('./labels.cache')). | |
Returns: | |
(dict): labels. | |
""" | |
x = {'labels': []} | |
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages | |
desc = f'{self.prefix}Scanning {path.parent / path.stem}...' | |
total = len(self.im_files) | |
with ThreadPool(NUM_THREADS) as pool: | |
results = pool.imap(func=verify_image_label, | |
iterable=zip(self.im_files, self.label_files, repeat(self.prefix), | |
repeat(self.use_keypoints), repeat(len(self.names)))) | |
pbar = tqdm(results, desc=desc, total=total, bar_format=TQDM_BAR_FORMAT) | |
for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar: | |
nm += nm_f | |
nf += nf_f | |
ne += ne_f | |
nc += nc_f | |
if im_file: | |
x['labels'].append( | |
dict( | |
im_file=im_file, | |
shape=shape, | |
cls=lb[:, 0:1], # n, 1 | |
bboxes=lb[:, 1:], # n, 4 | |
segments=segments, | |
keypoints=keypoint, | |
normalized=True, | |
bbox_format='xywh')) | |
if msg: | |
msgs.append(msg) | |
pbar.desc = f'{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt' | |
pbar.close() | |
if msgs: | |
LOGGER.info('\n'.join(msgs)) | |
if nf == 0: | |
LOGGER.warning(f'{self.prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}') | |
x['hash'] = get_hash(self.label_files + self.im_files) | |
x['results'] = nf, nm, ne, nc, len(self.im_files) | |
x['msgs'] = msgs # warnings | |
x['version'] = self.cache_version # cache version | |
if is_dir_writeable(path.parent): | |
if path.exists(): | |
path.unlink() # remove *.cache file if exists | |
np.save(str(path), x) # save cache for next time | |
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix | |
LOGGER.info(f'{self.prefix}New cache created: {path}') | |
else: | |
LOGGER.warning(f'{self.prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable, cache not saved.') | |
return x | |
def get_labels(self): | |
self.label_files = img2label_paths(self.im_files) | |
cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') | |
try: | |
import gc | |
gc.disable() # reduce pickle load time https://github.com/ultralytics/ultralytics/pull/1585 | |
cache, exists = np.load(str(cache_path), allow_pickle=True).item(), True # load dict | |
gc.enable() | |
assert cache['version'] == self.cache_version # matches current version | |
assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash | |
except (FileNotFoundError, AssertionError, AttributeError): | |
cache, exists = self.cache_labels(cache_path), False # run cache ops | |
# Display cache | |
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total | |
if exists and LOCAL_RANK in (-1, 0): | |
d = f'Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt' | |
tqdm(None, desc=self.prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results | |
if cache['msgs']: | |
LOGGER.info('\n'.join(cache['msgs'])) # display warnings | |
if nf == 0: # number of labels found | |
raise FileNotFoundError(f'{self.prefix}No labels found in {cache_path}, can not start training. {HELP_URL}') | |
# Read cache | |
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items | |
labels = cache['labels'] | |
self.im_files = [lb['im_file'] for lb in labels] # update im_files | |
# Check if the dataset is all boxes or all segments | |
lengths = ((len(lb['cls']), len(lb['bboxes']), len(lb['segments'])) for lb in labels) | |
len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths)) | |
if len_segments and len_boxes != len_segments: | |
LOGGER.warning( | |
f'WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, ' | |
f'len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. ' | |
'To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset.') | |
for lb in labels: | |
lb['segments'] = [] | |
if len_cls == 0: | |
raise ValueError(f'All labels empty in {cache_path}, can not start training without labels. {HELP_URL}') | |
return labels | |
# TODO: use hyp config to set all these augmentations | |
def build_transforms(self, hyp=None): | |
if self.augment: | |
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 | |
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 | |
transforms = v8_transforms(self, self.imgsz, hyp) | |
else: | |
transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)]) | |
transforms.append( | |
Format(bbox_format='xywh', | |
normalize=True, | |
return_mask=self.use_segments, | |
return_keypoint=self.use_keypoints, | |
batch_idx=True, | |
mask_ratio=hyp.mask_ratio, | |
mask_overlap=hyp.overlap_mask)) | |
return transforms | |
def close_mosaic(self, hyp): | |
hyp.mosaic = 0.0 # set mosaic ratio=0.0 | |
hyp.copy_paste = 0.0 # keep the same behavior as previous v8 close-mosaic | |
hyp.mixup = 0.0 # keep the same behavior as previous v8 close-mosaic | |
self.transforms = self.build_transforms(hyp) | |
def update_labels_info(self, label): | |
"""custom your label format here""" | |
# NOTE: cls is not with bboxes now, classification and semantic segmentation need an independent cls label | |
# we can make it also support classification and semantic segmentation by add or remove some dict keys there. | |
bboxes = label.pop('bboxes') | |
segments = label.pop('segments') | |
keypoints = label.pop('keypoints', None) | |
bbox_format = label.pop('bbox_format') | |
normalized = label.pop('normalized') | |
label['instances'] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized) | |
return label | |
def collate_fn(batch): | |
new_batch = {} | |
keys = batch[0].keys() | |
values = list(zip(*[list(b.values()) for b in batch])) | |
for i, k in enumerate(keys): | |
value = values[i] | |
if k == 'img': | |
value = torch.stack(value, 0) | |
if k in ['masks', 'keypoints', 'bboxes', 'cls']: | |
value = torch.cat(value, 0) | |
new_batch[k] = value | |
new_batch['batch_idx'] = list(new_batch['batch_idx']) | |
for i in range(len(new_batch['batch_idx'])): | |
new_batch['batch_idx'][i] += i # add target image index for build_targets() | |
new_batch['batch_idx'] = torch.cat(new_batch['batch_idx'], 0) | |
return new_batch | |
# Classification dataloaders ------------------------------------------------------------------------------------------- | |
class ClassificationDataset(torchvision.datasets.ImageFolder): | |
""" | |
YOLOv5 Classification Dataset. | |
Arguments | |
root: Dataset path | |
transform: torchvision transforms, used by default | |
album_transform: Albumentations transforms, used if installed | |
""" | |
def __init__(self, root, augment, imgsz, cache=False): | |
super().__init__(root=root) | |
self.torch_transforms = classify_transforms(imgsz) | |
self.album_transforms = classify_albumentations(augment, imgsz) if augment else None | |
self.cache_ram = cache is True or cache == 'ram' | |
self.cache_disk = cache == 'disk' | |
self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im | |
def __getitem__(self, i): | |
f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image | |
if self.cache_ram and im is None: | |
im = self.samples[i][3] = cv2.imread(f) | |
elif self.cache_disk: | |
if not fn.exists(): # load npy | |
np.save(fn.as_posix(), cv2.imread(f)) | |
im = np.load(fn) | |
else: # read image | |
im = cv2.imread(f) # BGR | |
if self.album_transforms: | |
sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))['image'] | |
else: | |
sample = self.torch_transforms(im) | |
return {'img': sample, 'cls': j} | |
def __len__(self) -> int: | |
return len(self.samples) | |
# TODO: support semantic segmentation | |
class SemanticDataset(BaseDataset): | |
def __init__(self): | |
pass | |