Spaces:
Sleeping
Sleeping
# Ultralytics YOLO ๐, GPL-3.0 license | |
import os | |
import random | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from PIL import Image | |
from torch.utils.data import DataLoader, dataloader, distributed | |
from ultralytics.yolo.data.dataloaders.stream_loaders import (LOADERS, LoadImages, LoadPilAndNumpy, LoadScreenshots, | |
LoadStreams, LoadTensor, SourceTypes, autocast_list) | |
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS | |
from ultralytics.yolo.utils.checks import check_file | |
from ..utils import LOGGER, RANK, colorstr | |
from ..utils.torch_utils import torch_distributed_zero_first | |
from .dataset import ClassificationDataset, YOLODataset | |
from .utils import PIN_MEMORY | |
class InfiniteDataLoader(dataloader.DataLoader): | |
"""Dataloader that reuses workers | |
Uses same syntax as vanilla DataLoader | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) | |
self.iterator = super().__iter__() | |
def __len__(self): | |
return len(self.batch_sampler.sampler) | |
def __iter__(self): | |
for _ in range(len(self)): | |
yield next(self.iterator) | |
class _RepeatSampler: | |
"""Sampler that repeats forever | |
Args: | |
sampler (Sampler) | |
""" | |
def __init__(self, sampler): | |
self.sampler = sampler | |
def __iter__(self): | |
while True: | |
yield from iter(self.sampler) | |
def seed_worker(worker_id): # noqa | |
# Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader | |
worker_seed = torch.initial_seed() % 2 ** 32 | |
np.random.seed(worker_seed) | |
random.seed(worker_seed) | |
def build_dataloader(cfg, batch, img_path, stride=32, rect=False, names=None, rank=-1, mode='train'): | |
assert mode in ['train', 'val'] | |
shuffle = mode == 'train' | |
if cfg.rect and shuffle: | |
LOGGER.warning("WARNING โ ๏ธ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False") | |
shuffle = False | |
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP | |
dataset = YOLODataset( | |
img_path=img_path, | |
imgsz=cfg.imgsz, | |
batch_size=batch, | |
augment=mode == 'train', # augmentation | |
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function | |
rect=cfg.rect or rect, # rectangular batches | |
cache=cfg.cache or None, | |
single_cls=cfg.single_cls or False, | |
stride=int(stride), | |
pad=0.0 if mode == 'train' else 0.5, | |
prefix=colorstr(f'{mode}: '), | |
use_segments=cfg.task == 'segment', | |
use_keypoints=cfg.task == 'keypoint', | |
names=names, | |
classes=cfg.classes) | |
batch = min(batch, len(dataset)) | |
nd = torch.cuda.device_count() # number of CUDA devices | |
workers = cfg.workers if mode == 'train' else cfg.workers * 2 | |
nw = min([os.cpu_count() // max(nd, 1), batch if batch > 1 else 0, workers]) # number of workers | |
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) | |
loader = DataLoader if cfg.image_weights or cfg.close_mosaic else InfiniteDataLoader # allow attribute updates | |
generator = torch.Generator() | |
generator.manual_seed(6148914691236517205 + RANK) | |
return loader(dataset=dataset, | |
batch_size=batch, | |
shuffle=shuffle and sampler is None, | |
num_workers=nw, | |
sampler=sampler, | |
pin_memory=PIN_MEMORY, | |
collate_fn=getattr(dataset, 'collate_fn', None), | |
worker_init_fn=seed_worker, | |
generator=generator), dataset | |
# build classification | |
# TODO: using cfg like `build_dataloader` | |
def build_classification_dataloader(path, | |
imgsz=224, | |
batch_size=16, | |
augment=True, | |
cache=False, | |
rank=-1, | |
workers=8, | |
shuffle=True): | |
# Returns Dataloader object to be used with YOLOv5 Classifier | |
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP | |
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache) | |
batch_size = min(batch_size, len(dataset)) | |
nd = torch.cuda.device_count() | |
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) | |
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) | |
generator = torch.Generator() | |
generator.manual_seed(6148914691236517205 + RANK) | |
return InfiniteDataLoader(dataset, | |
batch_size=batch_size, | |
shuffle=shuffle and sampler is None, | |
num_workers=nw, | |
sampler=sampler, | |
pin_memory=PIN_MEMORY, | |
worker_init_fn=seed_worker, | |
generator=generator) # or DataLoader(persistent_workers=True) | |
def check_source(source): | |
webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False | |
if isinstance(source, (str, int, Path)): # int for local usb camera | |
source = str(source) | |
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) | |
is_url = source.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')) | |
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) | |
screenshot = source.lower().startswith('screen') | |
if is_url and is_file: | |
source = check_file(source) # download | |
elif isinstance(source, tuple(LOADERS)): | |
in_memory = True | |
elif isinstance(source, (list, tuple)): | |
source = autocast_list(source) # convert all list elements to PIL or np arrays | |
from_img = True | |
elif isinstance(source, (Image.Image, np.ndarray)): | |
from_img = True | |
elif isinstance(source, torch.Tensor): | |
tensor = True | |
else: | |
raise TypeError('Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict') | |
return source, webcam, screenshot, from_img, in_memory, tensor | |
def load_inference_source(source=None, transforms=None, imgsz=640, vid_stride=1, stride=32, auto=True): | |
""" | |
TODO: docs | |
""" | |
source, webcam, screenshot, from_img, in_memory, tensor = check_source(source) | |
source_type = source.source_type if in_memory else SourceTypes(webcam, screenshot, from_img, tensor) | |
# Dataloader | |
if tensor: | |
dataset = LoadTensor(source) | |
elif in_memory: | |
dataset = source | |
elif webcam: | |
dataset = LoadStreams(source, | |
imgsz=imgsz, | |
stride=stride, | |
auto=auto, | |
transforms=transforms, | |
vid_stride=vid_stride) | |
elif screenshot: | |
dataset = LoadScreenshots(source, imgsz=imgsz, stride=stride, auto=auto, transforms=transforms) | |
elif from_img: | |
dataset = LoadPilAndNumpy(source, imgsz=imgsz, stride=stride, auto=auto, transforms=transforms) | |
else: | |
dataset = LoadImages(source, | |
imgsz=imgsz, | |
stride=stride, | |
auto=auto, | |
transforms=transforms, | |
vid_stride=vid_stride) | |
setattr(dataset, 'source_type', source_type) # attach source types | |
return dataset | |