Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, GPL-3.0 license | |
""" | |
Common modules | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
from ultralytics.yolo.utils.tal import dist2bbox, make_anchors | |
def autopad(k, p=None, d=1): # kernel, padding, dilation | |
# Pad to 'same' shape outputs | |
if d > 1: | |
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size | |
if p is None: | |
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad | |
return p | |
class Conv(nn.Module): | |
# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation) | |
default_act = nn.SiLU() # default activation | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): | |
super().__init__() | |
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) | |
self.bn = nn.BatchNorm2d(c2) | |
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() | |
def forward(self, x): | |
return self.act(self.bn(self.conv(x))) | |
def forward_fuse(self, x): | |
return self.act(self.conv(x)) | |
class DWConv(Conv): | |
# Depth-wise convolution | |
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation | |
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act) | |
class DWConvTranspose2d(nn.ConvTranspose2d): | |
# Depth-wise transpose convolution | |
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out | |
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2)) | |
class ConvTranspose(nn.Module): | |
# Convolution transpose 2d layer | |
default_act = nn.SiLU() # default activation | |
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True): | |
super().__init__() | |
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn) | |
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity() | |
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() | |
def forward(self, x): | |
return self.act(self.bn(self.conv_transpose(x))) | |
def forward_fuse(self, x): | |
return self.act(self.conv_transpose(x)) | |
class DFL(nn.Module): | |
# Integral module of Distribution Focal Loss (DFL) | |
# Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391 | |
def __init__(self, c1=16): | |
super().__init__() | |
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False) | |
x = torch.arange(c1, dtype=torch.float) | |
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1)) | |
self.c1 = c1 | |
def forward(self, x): | |
b, c, a = x.shape # batch, channels, anchors | |
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a) | |
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a) | |
class TransformerLayer(nn.Module): | |
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance) | |
def __init__(self, c, num_heads): | |
super().__init__() | |
self.q = nn.Linear(c, c, bias=False) | |
self.k = nn.Linear(c, c, bias=False) | |
self.v = nn.Linear(c, c, bias=False) | |
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) | |
self.fc1 = nn.Linear(c, c, bias=False) | |
self.fc2 = nn.Linear(c, c, bias=False) | |
def forward(self, x): | |
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x | |
x = self.fc2(self.fc1(x)) + x | |
return x | |
class TransformerBlock(nn.Module): | |
# Vision Transformer https://arxiv.org/abs/2010.11929 | |
def __init__(self, c1, c2, num_heads, num_layers): | |
super().__init__() | |
self.conv = None | |
if c1 != c2: | |
self.conv = Conv(c1, c2) | |
self.linear = nn.Linear(c2, c2) # learnable position embedding | |
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers))) | |
self.c2 = c2 | |
def forward(self, x): | |
if self.conv is not None: | |
x = self.conv(x) | |
b, _, w, h = x.shape | |
p = x.flatten(2).permute(2, 0, 1) | |
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h) | |
class Bottleneck(nn.Module): | |
# Standard bottleneck | |
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expand | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, k[0], 1) | |
self.cv2 = Conv(c_, c2, k[1], 1, g=g) | |
self.add = shortcut and c1 == c2 | |
def forward(self, x): | |
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) | |
class BottleneckCSP(nn.Module): | |
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) | |
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) | |
self.cv4 = Conv(2 * c_, c2, 1, 1) | |
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) | |
self.act = nn.SiLU() | |
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) | |
def forward(self, x): | |
y1 = self.cv3(self.m(self.cv1(x))) | |
y2 = self.cv2(x) | |
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1)))) | |
class C3(nn.Module): | |
# CSP Bottleneck with 3 convolutions | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = Conv(c1, c_, 1, 1) | |
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2) | |
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n))) | |
def forward(self, x): | |
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) | |
class C2(nn.Module): | |
# CSP Bottleneck with 2 convolutions | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |
super().__init__() | |
self.c = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, 2 * self.c, 1, 1) | |
self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2) | |
# self.attention = ChannelAttention(2 * self.c) # or SpatialAttention() | |
self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))) | |
def forward(self, x): | |
a, b = self.cv1(x).chunk(2, 1) | |
return self.cv2(torch.cat((self.m(a), b), 1)) | |
class C2f(nn.Module): | |
# CSP Bottleneck with 2 convolutions | |
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |
super().__init__() | |
self.c = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, 2 * self.c, 1, 1) | |
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2) | |
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) | |
def forward(self, x): | |
y = list(self.cv1(x).chunk(2, 1)) | |
y.extend(m(y[-1]) for m in self.m) | |
return self.cv2(torch.cat(y, 1)) | |
def forward_split(self, x): | |
y = list(self.cv1(x).split((self.c, self.c), 1)) | |
y.extend(m(y[-1]) for m in self.m) | |
return self.cv2(torch.cat(y, 1)) | |
class ChannelAttention(nn.Module): | |
# Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet | |
def __init__(self, channels: int) -> None: | |
super().__init__() | |
self.pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True) | |
self.act = nn.Sigmoid() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return x * self.act(self.fc(self.pool(x))) | |
class SpatialAttention(nn.Module): | |
# Spatial-attention module | |
def __init__(self, kernel_size=7): | |
super().__init__() | |
assert kernel_size in (3, 7), 'kernel size must be 3 or 7' | |
padding = 3 if kernel_size == 7 else 1 | |
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) | |
self.act = nn.Sigmoid() | |
def forward(self, x): | |
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1))) | |
class CBAM(nn.Module): | |
# Convolutional Block Attention Module | |
def __init__(self, c1, kernel_size=7): # ch_in, kernels | |
super().__init__() | |
self.channel_attention = ChannelAttention(c1) | |
self.spatial_attention = SpatialAttention(kernel_size) | |
def forward(self, x): | |
return self.spatial_attention(self.channel_attention(x)) | |
class C1(nn.Module): | |
# CSP Bottleneck with 1 convolution | |
def __init__(self, c1, c2, n=1): # ch_in, ch_out, number | |
super().__init__() | |
self.cv1 = Conv(c1, c2, 1, 1) | |
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n))) | |
def forward(self, x): | |
y = self.cv1(x) | |
return self.m(y) + y | |
class C3x(C3): | |
# C3 module with cross-convolutions | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): | |
super().__init__(c1, c2, n, shortcut, g, e) | |
self.c_ = int(c2 * e) | |
self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n))) | |
class C3TR(C3): | |
# C3 module with TransformerBlock() | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): | |
super().__init__(c1, c2, n, shortcut, g, e) | |
c_ = int(c2 * e) | |
self.m = TransformerBlock(c_, c_, 4, n) | |
class C3Ghost(C3): | |
# C3 module with GhostBottleneck() | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): | |
super().__init__(c1, c2, n, shortcut, g, e) | |
c_ = int(c2 * e) # hidden channels | |
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n))) | |
class SPP(nn.Module): | |
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729 | |
def __init__(self, c1, c2, k=(5, 9, 13)): | |
super().__init__() | |
c_ = c1 // 2 # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) | |
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) | |
def forward(self, x): | |
x = self.cv1(x) | |
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) | |
class SPPF(nn.Module): | |
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher | |
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) | |
super().__init__() | |
c_ = c1 // 2 # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = Conv(c_ * 4, c2, 1, 1) | |
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) | |
def forward(self, x): | |
x = self.cv1(x) | |
y1 = self.m(x) | |
y2 = self.m(y1) | |
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1)) | |
class Focus(nn.Module): | |
# Focus wh information into c-space | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |
super().__init__() | |
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act) | |
# self.contract = Contract(gain=2) | |
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) | |
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1)) | |
# return self.conv(self.contract(x)) | |
class GhostConv(nn.Module): | |
# Ghost Convolution https://github.com/huawei-noah/ghostnet | |
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups | |
super().__init__() | |
c_ = c2 // 2 # hidden channels | |
self.cv1 = Conv(c1, c_, k, s, None, g, act=act) | |
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act) | |
def forward(self, x): | |
y = self.cv1(x) | |
return torch.cat((y, self.cv2(y)), 1) | |
class GhostBottleneck(nn.Module): | |
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet | |
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride | |
super().__init__() | |
c_ = c2 // 2 | |
self.conv = nn.Sequential( | |
GhostConv(c1, c_, 1, 1), # pw | |
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw | |
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear | |
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, | |
act=False)) if s == 2 else nn.Identity() | |
def forward(self, x): | |
return self.conv(x) + self.shortcut(x) | |
class Concat(nn.Module): | |
# Concatenate a list of tensors along dimension | |
def __init__(self, dimension=1): | |
super().__init__() | |
self.d = dimension | |
def forward(self, x): | |
return torch.cat(x, self.d) | |
class Proto(nn.Module): | |
# YOLOv8 mask Proto module for segmentation models | |
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks | |
super().__init__() | |
self.cv1 = Conv(c1, c_, k=3) | |
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest') | |
self.cv2 = Conv(c_, c_, k=3) | |
self.cv3 = Conv(c_, c2) | |
def forward(self, x): | |
return self.cv3(self.cv2(self.upsample(self.cv1(x)))) | |
class Ensemble(nn.ModuleList): | |
# Ensemble of models | |
def __init__(self): | |
super().__init__() | |
def forward(self, x, augment=False, profile=False, visualize=False): | |
y = [module(x, augment, profile, visualize)[0] for module in self] | |
# y = torch.stack(y).max(0)[0] # max ensemble | |
# y = torch.stack(y).mean(0) # mean ensemble | |
y = torch.cat(y, 1) # nms ensemble | |
return y, None # inference, train output | |
# heads | |
class Detect(nn.Module): | |
# YOLOv8 Detect head for detection models | |
dynamic = False # force grid reconstruction | |
export = False # export mode | |
shape = None | |
anchors = torch.empty(0) # init | |
strides = torch.empty(0) # init | |
def __init__(self, nc=80, ch=()): # detection layer | |
super().__init__() | |
self.nc = nc # number of classes | |
self.nl = len(ch) # number of detection layers | |
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x) | |
self.no = nc + self.reg_max * 4 # number of outputs per anchor | |
self.stride = torch.zeros(self.nl) # strides computed during build | |
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], self.nc) # channels | |
self.cv2 = nn.ModuleList( | |
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch) | |
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch) | |
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity() | |
def forward(self, x): | |
shape = x[0].shape # BCHW | |
for i in range(self.nl): | |
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) | |
if self.training: | |
return x | |
elif self.dynamic or self.shape != shape: | |
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5)) | |
self.shape = shape | |
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2) | |
if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'): # avoid TF FlexSplitV ops | |
box = x_cat[:, :self.reg_max * 4] | |
cls = x_cat[:, self.reg_max * 4:] | |
else: | |
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1) | |
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides | |
y = torch.cat((dbox, cls.sigmoid()), 1) | |
return y if self.export else (y, x) | |
def bias_init(self): | |
# Initialize Detect() biases, WARNING: requires stride availability | |
m = self # self.model[-1] # Detect() module | |
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 | |
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency | |
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from | |
a[-1].bias.data[:] = 1.0 # box | |
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img) | |
class Segment(Detect): | |
# YOLOv8 Segment head for segmentation models | |
def __init__(self, nc=80, nm=32, npr=256, ch=()): | |
super().__init__(nc, ch) | |
self.nm = nm # number of masks | |
self.npr = npr # number of protos | |
self.proto = Proto(ch[0], self.npr, self.nm) # protos | |
self.detect = Detect.forward | |
c4 = max(ch[0] // 4, self.nm) | |
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch) | |
def forward(self, x): | |
p = self.proto(x[0]) # mask protos | |
bs = p.shape[0] # batch size | |
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients | |
x = self.detect(self, x) | |
if self.training: | |
return x, mc, p | |
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p)) | |
class Classify(nn.Module): | |
# YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2) | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups | |
super().__init__() | |
c_ = 1280 # efficientnet_b0 size | |
self.conv = Conv(c1, c_, k, s, autopad(k, p), g) | |
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1) | |
self.drop = nn.Dropout(p=0.0, inplace=True) | |
self.linear = nn.Linear(c_, c2) # to x(b,c2) | |
def forward(self, x): | |
if isinstance(x, list): | |
x = torch.cat(x, 1) | |
x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1))) | |
return x if self.training else x.softmax(1) | |