Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, GPL-3.0 license | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import torch | |
from PIL import Image | |
from ultralytics import YOLO | |
from ultralytics.yolo.data.build import load_inference_source | |
from ultralytics.yolo.utils import LINUX, ONLINE, ROOT, SETTINGS | |
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n.pt' | |
CFG = 'yolov8n.yaml' | |
SOURCE = ROOT / 'assets/bus.jpg' | |
SOURCE_GREYSCALE = Path(f'{SOURCE.parent / SOURCE.stem}_greyscale.jpg') | |
SOURCE_RGBA = Path(f'{SOURCE.parent / SOURCE.stem}_4ch.png') | |
# Convert SOURCE to greyscale and 4-ch | |
im = Image.open(SOURCE) | |
im.convert('L').save(SOURCE_GREYSCALE) # greyscale | |
im.convert('RGBA').save(SOURCE_RGBA) # 4-ch PNG with alpha | |
def test_model_forward(): | |
model = YOLO(CFG) | |
model(SOURCE) | |
def test_model_info(): | |
model = YOLO(CFG) | |
model.info() | |
model = YOLO(MODEL) | |
model.info(verbose=True) | |
def test_model_fuse(): | |
model = YOLO(CFG) | |
model.fuse() | |
model = YOLO(MODEL) | |
model.fuse() | |
def test_predict_dir(): | |
model = YOLO(MODEL) | |
model(source=ROOT / 'assets') | |
def test_predict_img(): | |
model = YOLO(MODEL) | |
seg_model = YOLO('yolov8n-seg.pt') | |
cls_model = YOLO('yolov8n-cls.pt') | |
im = cv2.imread(str(SOURCE)) | |
assert len(model(source=Image.open(SOURCE), save=True, verbose=True)) == 1 # PIL | |
assert len(model(source=im, save=True, save_txt=True)) == 1 # ndarray | |
assert len(model(source=[im, im], save=True, save_txt=True)) == 2 # batch | |
assert len(list(model(source=[im, im], save=True, stream=True))) == 2 # stream | |
assert len(model(torch.zeros(320, 640, 3).numpy())) == 1 # tensor to numpy | |
batch = [ | |
str(SOURCE), # filename | |
Path(SOURCE), # Path | |
'https://ultralytics.com/images/zidane.jpg' if ONLINE else SOURCE, # URI | |
cv2.imread(str(SOURCE)), # OpenCV | |
Image.open(SOURCE), # PIL | |
np.zeros((320, 640, 3))] # numpy | |
assert len(model(batch)) == len(batch) # multiple sources in a batch | |
# Test tensor inference | |
im = cv2.imread(str(SOURCE)) # OpenCV | |
t = cv2.resize(im, (32, 32)) | |
t = torch.from_numpy(t.transpose((2, 0, 1))) | |
t = torch.stack([t, t, t, t]) | |
results = model(t) | |
assert len(results) == t.shape[0] | |
results = seg_model(t) | |
assert len(results) == t.shape[0] | |
results = cls_model(t) | |
assert len(results) == t.shape[0] | |
def test_predict_grey_and_4ch(): | |
model = YOLO(MODEL) | |
for f in SOURCE_RGBA, SOURCE_GREYSCALE: | |
for source in Image.open(f), cv2.imread(str(f)), f: | |
model(source, save=True, verbose=True) | |
def test_val(): | |
model = YOLO(MODEL) | |
model.val(data='coco8.yaml', imgsz=32) | |
def test_val_scratch(): | |
model = YOLO(CFG) | |
model.val(data='coco8.yaml', imgsz=32) | |
def test_amp(): | |
if torch.cuda.is_available(): | |
from ultralytics.yolo.engine.trainer import check_amp | |
model = YOLO(MODEL).model.cuda() | |
assert check_amp(model) | |
def test_train_scratch(): | |
model = YOLO(CFG) | |
model.train(data='coco8.yaml', epochs=1, imgsz=32) | |
model(SOURCE) | |
def test_train_pretrained(): | |
model = YOLO(MODEL) | |
model.train(data='coco8.yaml', epochs=1, imgsz=32) | |
model(SOURCE) | |
def test_export_torchscript(): | |
model = YOLO(MODEL) | |
f = model.export(format='torchscript') | |
YOLO(f)(SOURCE) # exported model inference | |
def test_export_torchscript_scratch(): | |
model = YOLO(CFG) | |
f = model.export(format='torchscript') | |
YOLO(f)(SOURCE) # exported model inference | |
def test_export_onnx(): | |
model = YOLO(MODEL) | |
f = model.export(format='onnx') | |
YOLO(f)(SOURCE) # exported model inference | |
def test_export_openvino(): | |
model = YOLO(MODEL) | |
f = model.export(format='openvino') | |
YOLO(f)(SOURCE) # exported model inference | |
def test_export_coreml(): # sourcery skip: move-assign | |
model = YOLO(MODEL) | |
model.export(format='coreml') | |
# if MACOS: | |
# YOLO(f)(SOURCE) # model prediction only supported on macOS | |
def test_export_tflite(enabled=False): | |
# TF suffers from install conflicts on Windows and macOS | |
if enabled and LINUX: | |
model = YOLO(MODEL) | |
f = model.export(format='tflite') | |
YOLO(f)(SOURCE) | |
def test_export_pb(enabled=False): | |
# TF suffers from install conflicts on Windows and macOS | |
if enabled and LINUX: | |
model = YOLO(MODEL) | |
f = model.export(format='pb') | |
YOLO(f)(SOURCE) | |
def test_export_paddle(enabled=False): | |
# Paddle protobuf requirements conflicting with onnx protobuf requirements | |
if enabled: | |
model = YOLO(MODEL) | |
model.export(format='paddle') | |
def test_all_model_yamls(): | |
for m in list((ROOT / 'models').rglob('*.yaml')): | |
YOLO(m.name) | |
def test_workflow(): | |
model = YOLO(MODEL) | |
model.train(data='coco8.yaml', epochs=1, imgsz=32) | |
model.val() | |
model.predict(SOURCE) | |
model.export(format='onnx') # export a model to ONNX format | |
def test_predict_callback_and_setup(): | |
# test callback addition for prediction | |
def on_predict_batch_end(predictor): # results -> List[batch_size] | |
path, _, im0s, _, _ = predictor.batch | |
# print('on_predict_batch_end', im0s[0].shape) | |
im0s = im0s if isinstance(im0s, list) else [im0s] | |
bs = [predictor.dataset.bs for _ in range(len(path))] | |
predictor.results = zip(predictor.results, im0s, bs) | |
model = YOLO(MODEL) | |
model.add_callback('on_predict_batch_end', on_predict_batch_end) | |
dataset = load_inference_source(source=SOURCE, transforms=model.transforms) | |
bs = dataset.bs # noqa access predictor properties | |
results = model.predict(dataset, stream=True) # source already setup | |
for _, (result, im0, bs) in enumerate(results): | |
print('test_callback', im0.shape) | |
print('test_callback', bs) | |
boxes = result.boxes # Boxes object for bbox outputs | |
print(boxes) | |
def test_result(): | |
model = YOLO('yolov8n-seg.pt') | |
res = model([SOURCE, SOURCE]) | |
res[0].plot(show_conf=False) | |
res[0] = res[0].cpu().numpy() | |
print(res[0].path, res[0].masks.masks) | |
model = YOLO('yolov8n.pt') | |
res = model(SOURCE) | |
res[0].plot() | |
print(res[0].path) | |
model = YOLO('yolov8n-cls.pt') | |
res = model(SOURCE) | |
res[0].plot() | |
print(res[0].path) | |