Spaces:
Sleeping
Sleeping
| # Ultralytics YOLO π, GPL-3.0 license | |
| import subprocess | |
| from pathlib import Path | |
| from ultralytics.yolo.utils import LINUX, ONLINE, ROOT, SETTINGS | |
| MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n' | |
| CFG = 'yolov8n' | |
| def run(cmd): | |
| # Run a subprocess command with check=True | |
| subprocess.run(cmd.split(), check=True) | |
| def test_special_modes(): | |
| run('yolo checks') | |
| run('yolo settings') | |
| run('yolo help') | |
| # Train checks --------------------------------------------------------------------------------------------------------- | |
| def test_train_det(): | |
| run(f'yolo train detect model={CFG}.yaml data=coco8.yaml imgsz=32 epochs=1 v5loader') | |
| def test_train_seg(): | |
| run(f'yolo train segment model={CFG}-seg.yaml data=coco8-seg.yaml imgsz=32 epochs=1') | |
| def test_train_cls(): | |
| run(f'yolo train classify model={CFG}-cls.yaml data=imagenet10 imgsz=32 epochs=1') | |
| # Val checks ----------------------------------------------------------------------------------------------------------- | |
| def test_val_detect(): | |
| run(f'yolo val detect model={MODEL}.pt data=coco8.yaml imgsz=32') | |
| def test_val_segment(): | |
| run(f'yolo val segment model={MODEL}-seg.pt data=coco8-seg.yaml imgsz=32') | |
| def test_val_classify(): | |
| run(f'yolo val classify model={MODEL}-cls.pt data=imagenet10 imgsz=32') | |
| # Predict checks ------------------------------------------------------------------------------------------------------- | |
| def test_predict_detect(): | |
| run(f"yolo predict model={MODEL}.pt source={ROOT / 'assets'} imgsz=32 save save_crop save_txt") | |
| if ONLINE: | |
| run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/images/bus.jpg imgsz=32') | |
| run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/assets/decelera_landscape_min.mov imgsz=32') | |
| run(f'yolo predict model={MODEL}.pt source=https://ultralytics.com/assets/decelera_portrait_min.mov imgsz=32') | |
| def test_predict_segment(): | |
| run(f"yolo predict model={MODEL}-seg.pt source={ROOT / 'assets'} imgsz=32 save save_txt") | |
| def test_predict_classify(): | |
| run(f"yolo predict model={MODEL}-cls.pt source={ROOT / 'assets'} imgsz=32 save save_txt") | |
| # Export checks -------------------------------------------------------------------------------------------------------- | |
| def test_export_detect_torchscript(): | |
| run(f'yolo export model={MODEL}.pt format=torchscript') | |
| def test_export_segment_torchscript(): | |
| run(f'yolo export model={MODEL}-seg.pt format=torchscript') | |
| def test_export_classify_torchscript(): | |
| run(f'yolo export model={MODEL}-cls.pt format=torchscript') | |
| def test_export_detect_edgetpu(enabled=False): | |
| if enabled and LINUX: | |
| run(f'yolo export model={MODEL}.pt format=edgetpu') | |