Spaces:
Sleeping
Sleeping
File size: 31,876 Bytes
0135475 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "FyRdDYkqAKN4"
},
"source": [
"# BISINDO Sign Language Translator"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Description\n",
"\n",
"This project is a final project for \"Rekayasa Sistem Berbasis Pengetahuan (RSBP)\". This project is a web-based application that can translate BISINDO sign language to Indonesian language. This application is made to help people who are not familiar with BISINDO sign language to communicate with people who are deaf. </br>\n",
"\n",
"## Appoarch Method\n",
"\n",
"This project employs the Object Detection method to identify hand gestures, utilizing a customized YOLO v8 dataset model. This model is designed to detect various hand gestures and provide the bounding box coordinates delineating these gestures. Once the bounding box is identified, the corresponding region of interest (ROI) containing the hand gesture is cropped. Subsequently, this cropped image undergoes further processing through a Convolutional Neural Network (CNN) model for precise classification of the detected hand gesture. The CNN model's output yields the specific label corresponding to the gesture identified. To enhance user experience, these labels are translated into Indonesian using a Rule-Based method before being displayed on the screen interface. </br>\n",
"\n",
"In terms of visualization, the project harnesses MediaPipe, a tool enabling the drawing of hand gesture bounding boxes and their associated labels directly on the screen. This integration ensures users can visually comprehend the detected gestures in real-time with graphical representations. </br>\n",
"\n",
"Moreover, the project is built as a web-based application using Flask, allowing seamless accessibility and interaction through a web interface. This framework facilitates the deployment of the hand gesture detection system within a browser, ensuring ease of use across various devices without necessitating complex setups or installations. </br>\n",
"\n",
"## Visual Demo\n",
"\n",
"### Dashboard\n",
"</br>\n",
"\n",
"### Stream Youtube Detection\n",
"</br>\n",
"\n",
"### Camera Detection\n",
"</br>\n",
"\n",
"## Step by Step Method\n",
"- Train the model using YOLOv8 with custom dataset\n",
"- Create a CNN model to classify the cropped image\n",
"- Create a Flask app to run the model\n",
"- Create a web interface using HTML and CSS\n",
"- Create feature interaction using Javascript \n",
"\n",
"## Features\n",
"- Detect hand gesture from Camera\n",
"- Detect hand gesture from Youtube video\n",
"- Switch on/off the detection\n",
"- Switch on/off the landmark\n",
"- Flip the video\n",
"- Modify Confidence Threshold\n",
"- The result accumulates the detected words over 10 sequential frames"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Training Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check GPU"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Y8cDtxLIBHgQ",
"outputId": "d2185ab5-0f43-47b6-b675-937ee56331d5"
},
"outputs": [],
"source": [
"!nvidia-smi"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import OS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "CjpPg4mGKc1v",
"outputId": "c0bb0d9a-2cd3-4bea-d38a-070b74a5a89b"
},
"outputs": [],
"source": [
"import os\n",
"HOME = os.getcwd()\n",
"print(HOME)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3C3EO_2zNChu"
},
"source": [
"### Yolo Instalation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "tdSMcABDNKW-",
"outputId": "6193e25a-2cfd-4d96-fe9f-769add6166f7"
},
"outputs": [],
"source": [
"%pip install ultralytics==8.0.20\n",
"\n",
"from IPython import display\n",
"display.clear_output()\n",
"\n",
"import ultralytics\n",
"ultralytics.checks()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "VOEYrlBoP9-E"
},
"outputs": [],
"source": [
"from ultralytics import YOLO\n",
"\n",
"from IPython.display import display, Image"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fT1qD4toTTw0"
},
"source": [
"### Import Dataset Form Roboflow"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "BSd93ZJzZZKt",
"outputId": "eb8bcd99-cea8-48a1-bf11-7a37f2aa7018"
},
"outputs": [],
"source": [
"%mkdir {HOME}/datasets\n",
"%cd {HOME}/datasets\n",
"\n",
"%pip install roboflow --quiet\n",
"\n",
"from roboflow import Roboflow\n",
"\n",
"from roboflow import Roboflow\n",
"rf = Roboflow(api_key=\"moOAxzoPZOtIzhyyco0r\")\n",
"project = rf.workspace(\"bisindo-qndjb\").project(\"bisindov2\")\n",
"dataset = project.version(1).download(\"yolov8\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YUjFBKKqXa-u"
},
"source": [
"### Training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "D2YkphuiaE7_",
"outputId": "7f5ea4f9-6e7d-4470-8209-9a253786cd13"
},
"outputs": [],
"source": [
"%cd {HOME}\n",
"\n",
"yolo task=detect mode=train model=yolov8s.pt data={dataset.location}/data.yaml epochs=25 imgsz=800 plots=True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1MScstfHhArr",
"outputId": "7865d222-af3a-49bd-9aa7-3816872815c9"
},
"outputs": [],
"source": [
"%ls {HOME}/runs/detect/train/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 485
},
"id": "_J35i8Ofhjxa",
"outputId": "762ae444-f7c9-42f5-cd2c-8ea7facee223"
},
"outputs": [],
"source": [
"%cd {HOME}\n",
"Image(filename=f'{HOME}/runs/detect/train/confusion_matrix.png', width=600)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 335
},
"id": "A-urTWUkhRmn",
"outputId": "58b67f20-8844-43f4-ff41-c8c498036fc8"
},
"outputs": [],
"source": [
"%cd {HOME}\n",
"Image(filename=f'{HOME}/runs/detect/train/results.png', width=600)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6ODk1VTlevxn"
},
"source": [
"### Validate Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "YpyuwrNlXc1P",
"outputId": "88f5e42d-e10d-45db-c578-7c85f8667c10"
},
"outputs": [],
"source": [
"%cd {HOME}\n",
"\n",
"!yolo task=detect mode=val model={HOME}/runs/detect/train/weights/best.pt data={dataset.location}/data.yaml"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "i4eASbcWkQBq"
},
"source": [
"### Inference Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Wjc1ctZykYuf",
"outputId": "f400774d-404b-4fef-ef58-796fc4fd522e"
},
"outputs": [],
"source": [
"%cd {HOME}\n",
"!yolo task=detect mode=predict model={HOME}/runs/detect/train/weights/best.pt conf=0.25 source={dataset.location}/test/images save=True"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mEYIo95n-I0S"
},
"source": [
"### Run Model on CAMERA"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "As_cl3OkQWQ1",
"outputId": "759e88f3-c3b8-474f-d217-35765bd81d06"
},
"outputs": [],
"source": [
"%cd {HOME}\n",
"!yolo task=detect mode=predict model=D:/Kuliah/\\(2023\\)S5-RSBP/FP/runs/detect/train/weights/best.pt source=0 show=true"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training Result\n",
"\n",
"### Confussion Matrix\n",
"</br>\n",
"\n",
"### Result Curve\n",
"</br>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Flask Web Application"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Install Requirements Dependencies\n",
"To install the Python requirements from the `requirements.txt` file, run the following command in your terminal or command prompt:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pip install -r requirements.txt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create new app.py file for main program\n",
"Import libray that needed for this project"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from ultralytics import YOLO\n",
"import time\n",
"import numpy as np\n",
"import mediapipe as mp\n",
"\n",
"\n",
"import cv2\n",
"from flask import Flask, render_template, request, Response, session, redirect, url_for\n",
"\n",
"from flask_socketio import SocketIO\n",
"import yt_dlp as youtube_dl"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Explanation for each library:\n",
"- ultralytics.YOLO: Used for real-time object detection.\n",
"- time: Handles time-related functions.\n",
"- numpy as np: Supports numerical computations and arrays.\n",
"- mediapipe as mp: Facilitates various media processing tasks like object detection and hand tracking.\n",
"- cv2: Offers tools for computer vision, image, and video processing.\n",
"- Flask: A lightweight web framework for building web applications.\n",
"- Flask_socketio and SocketIO: Enables WebSocket support for real-time communication in Flask.\n",
"- yt_dlp as youtube_dl: Used to stream media content from various streaming sites, like YouTube."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Initialize Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_object_detection = YOLO(\"bisindo.pt\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create Function for Detection"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def show(self, url):\n",
" print(url)\n",
" self._preview = False\n",
" self._flipH = False\n",
" self._detect = False\n",
" self._mediaPipe = False\n",
"\n",
" self._confidence = 75.0\n",
" ydl_opts = {\n",
" \"quiet\": True,\n",
" \"no_warnings\": True,\n",
" \"format\": \"best\",\n",
" \"forceurl\": True,\n",
" }\n",
"\n",
" if url == '0':\n",
" cap = cv2.VideoCapture(0)\n",
" else:\n",
" \n",
" ydl = youtube_dl.YoutubeDL(ydl_opts)\n",
"\n",
" info = ydl.extract_info(url, download=False)\n",
" url = info[\"url\"]\n",
"\n",
" cap = cv2.VideoCapture(url)\n",
"\n",
" while True:\n",
" if self._preview:\n",
" if stop_flag:\n",
" print(\"Process Stopped\")\n",
" return\n",
"\n",
" grabbed, frame = cap.read()\n",
" if not grabbed:\n",
" break\n",
" if self.flipH:\n",
" frame = cv2.flip(frame, 1)\n",
"\n",
" if self.detect:\n",
" frame_yolo = frame.copy()\n",
" results_yolo = model_object_detection.predict(frame_yolo, conf=self._confidence / 100)\n",
"\n",
" frame_yolo, labels = results_yolo[0].plot()\n",
" list_labels = []\n",
" # labels_confidences\n",
" for label in labels:\n",
" confidence = label.split(\" \")[-1]\n",
" label = (label.split(\" \"))[:-1]\n",
" label = \" \".join(label)\n",
" list_labels.append(label)\n",
" list_labels.append(confidence)\n",
" socketio.emit('label', list_labels)\n",
"\n",
" if self.mediaPipe:\n",
" # Convert the image to RGB for processing with MediaPipe\n",
" image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
" results = self.hands.process(image)\n",
" \n",
" if results.multi_hand_landmarks:\n",
" for hand_landmarks in results.multi_hand_landmarks:\n",
" mp.solutions.drawing_utils.draw_landmarks(\n",
" frame,\n",
" hand_landmarks,\n",
" self.mp_hands.HAND_CONNECTIONS,\n",
" landmark_drawing_spec=mp.solutions.drawing_utils.DrawingSpec(color=(255, 0, 0), thickness=4, circle_radius=3),\n",
" connection_drawing_spec=mp.solutions.drawing_utils.DrawingSpec(color=(255, 255, 255), thickness=2, circle_radius=2), \n",
" )\n",
"\n",
" frame = cv2.imencode(\".jpg\", frame)[1].tobytes()\n",
" yield ( \n",
" b'--frame\\r\\n'\n",
" b'Content-Type: image/jpeg\\r\\n\\r\\n' + frame + b'\\r\\n'\n",
" )\n",
" else:\n",
" snap = np.zeros((\n",
" 1000,\n",
" 1000\n",
" ), np.uint8)\n",
" label = \"Streaming Off\"\n",
" H, W = snap.shape\n",
" font = cv2.FONT_HERSHEY_PLAIN\n",
" color = (255, 255, 255)\n",
" cv2.putText(snap, label, (W//2 - 100, H//2),\n",
" font, 2, color, 2)\n",
" frame = cv2.imencode(\".jpg\", snap)[1].tobytes()\n",
" yield (b'--frame\\r\\n'\n",
" b'Content-Type: image/jpeg\\r\\n\\r\\n' + frame + b'\\r\\n')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Explanation for each object:\n",
"- preview(): Displays the video stream on the web interface.\n",
"- flipH(): Flips the video horizontally.\n",
"- detect(): Detects using Yolo model the hand gesture from the video stream.\n",
"- mediaPipe(): Draws the hand gesture landmark on the video stream.\n",
"\n",
"### Explanation for flow of the program:\n",
"- If user input is \"camera\", the program will run the camera detection.\n",
"- If user input is \"url youtube video\", the program will run the youtube detection.\n",
"- If user activate the preview, the program will run the video stream/camera.\n",
"- If user activate the detection, the program will run the detection.\n",
"- If user activate the landmark, the program will run the landmark.\n",
"- If user activate the flip, video will be flipped.\n",
"- Threshold is used to set the minimum confidence threshold of the detection.\n",
"- If the preview is not activated, the program will show `streaming off` label.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Integration in HTML, CSS, and Javascript"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### In CSS file, create a style for the stream and output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"/* * Local selectors */\n",
"#container {\n",
" width: 100%;\n",
" height: 586px;\n",
" border: 8px #2c374a solid;\n",
" background-color: #0F172A;\n",
" border-radius: 5px;\n",
"}\n",
"\n",
"#videoElement {\n",
" height: 570px;\n",
" width: 100%;\n",
" background-color: #0F172A;\n",
"\n",
" display: block;\n",
" margin-left: auto;\n",
" margin-right: auto;\n",
"}\n",
"\n",
"#terminal {\n",
" border-radius: 5px;\n",
" border: 5px #1C2637 solid;\n",
" font-family: monospace;\n",
" font-size: 12px;\n",
" background-color: #0F172A;\n",
" height: 490px;\n",
" overflow-y: scroll;\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### In Javascript, create a function needed for the web interface"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### For Camera or Video Button"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"function startCamera() {\n",
" var url = '0';\n",
" $('#urlForm').attr('action', '/index'); \n",
" $('#urlForm').attr('method', 'POST'); \n",
" $('#urlForm').find('#url').val(url);\n",
" $('#urlForm').submit();\n",
"}\n",
"\n",
"function startVideo() {\n",
" var url = $('#url').val();\n",
" $('#urlForm').attr('action', '/index'); \n",
" $('#urlForm').attr('method', 'POST'); \n",
" $('#urlForm').find('#url').val(url);\n",
" $('#urlForm').submit();\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### For terminal output, socket, and final output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"var socket = io.connect('http://127.0.0.1:5000/');\n",
"\n",
"let consecutiveWords = [];\n",
"let finalSentence = \"\";\n",
"let wordCounter = 0;\n",
"\n",
"function appendToTerminal(message) {\n",
" var terminal = document.getElementById(\"terminal\");\n",
" var p = document.createElement(\"p\");\n",
" p.innerHTML = `<table class=\"table table-striped text-center\" style=\"border: none;\">\n",
" <tr class=\"row\">\n",
" <td class=\"col-md-6\" style=\"color: #01ECEC; border: none;\">${message[0]}</td>\n",
" <td class=\"col-md-6\" style=\"color: #01ECEC; border: none;\">${message[1]}</td>\n",
" </tr>\n",
" </table>`;\n",
" terminal.appendChild(p);\n",
" terminal.scrollTop = terminal.scrollHeight;\n",
"\n",
" if (consecutiveWords.length === 0 || consecutiveWords[consecutiveWords.length - 1] === message[0]) {\n",
" consecutiveWords.push(message[0]);\n",
" wordCounter++; \n",
" } else {\n",
" consecutiveWords = [message[0]];\n",
" wordCounter = 1;\n",
" }\n",
"\n",
" if (wordCounter >= 10) {\n",
" finalSentence += (finalSentence.length > 0 ? \" \" : \"\") + consecutiveWords[0];\n",
" document.getElementById(\"finalSentencePara\").innerText = finalSentence;\n",
" consecutiveWords = [];\n",
" wordCounter = 0;\n",
" }\n",
"}\n",
"\n",
"socket.on(\"label\", (data) => {\n",
" appendToTerminal(data);\n",
"});"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Integration with SocketIO:\n",
"\n",
"- Listens for data labeled as \"label\" from a SocketIO connection.\n",
"- Calls appendToTerminal() to display the received data in the terminal and potentially update an advertisement based on the data.\n",
"\n",
"Function appendToTerminal(message):\n",
"\n",
"- Takes a message as input.\n",
"- Adds a table with two columns to the terminal for displaying the message.\n",
"- Keeps track of consecutive words and their counts.\n",
"- Constructs a final sentence if a word appears more than ten times consecutively."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### For Toggle Button"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"function toggleHSwitch() {\n",
" var switchElement = $(\"#flip-horizontal\");\n",
" var switchIsOn = switchElement.is(\":checked\");\n",
"\n",
" if (switchIsOn) {\n",
" console.log(\"SWITCH ON\")\n",
" $.getJSON(\"/request_flipH_switch\", function (data) {\n",
" console.log(\"Switch on request sent.\");\n",
" });\n",
" } else {\n",
" console.log(\"SWITCH OFF\")\n",
" $.getJSON(\"/request_flipH_switch\", function (data) {\n",
" console.log(\"Switch off request sent.\");\n",
" });\n",
" }\n",
"}\n",
"\n",
"function toggleMediaPipeSwitch() {\n",
" var switchElement = $(\"#mediapipe\");\n",
" var switchIsOn = switchElement.is(\":checked\");\n",
"\n",
" if (switchIsOn) {\n",
" console.log(\"SWITCH ON\")\n",
" $.getJSON(\"/request_mediapipe_switch\", function (data) {\n",
" console.log(\"Switch on request sent.\");\n",
" });\n",
" } else {\n",
" console.log(\"SWITCH OFF\")\n",
" $.getJSON(\"/request_mediapipe_switch\", function (data) {\n",
" console.log(\"Switch off request sent.\");\n",
" });\n",
" }\n",
"}\n",
"\n",
"function toggleDetSwitch() {\n",
"\n",
" var switchElement = $(\"#run_detection\");\n",
" var switchIsOn = switchElement.is(\":checked\");\n",
"\n",
" if (switchIsOn) {\n",
" console.log(\"SWITCH ON\")\n",
" $.getJSON(\"/request_run_model_switch\", function (data) {\n",
" console.log(\"Switch on request sent.\");\n",
" });\n",
" } else {\n",
" console.log(\"SWITCH OFF\")\n",
" $.getJSON(\"/request_run_model_switch\", function (data) {\n",
" console.log(\"Switch off request sent.\");\n",
" });\n",
" }\n",
"}\n",
"\n",
"function toggleOffSwitch() {\n",
" var switchElement = $(\"#turn_off\");\n",
" var switchIsOn = switchElement.is(\":checked\");\n",
"\n",
" if (switchIsOn) {\n",
" console.log(\"Camera ON\")\n",
" $.getJSON(\"/request_preview_switch\", function (data) {\n",
" console.log(\"Switch on request sent.\");\n",
" });\n",
" } else {\n",
" console.log(\"Camera OFF\")\n",
" $.getJSON(\"/request_preview_switch\", function (data) {\n",
" console.log(\"Switch off request sent.\");\n",
" });\n",
" }\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### For HTML, integrate the Javascript function"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### For Camera and Terminal Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"<!-- Video -->\n",
"<div class=\"col-span-8 mx-4 mt-3\">\n",
" <div id=\"container\">\n",
" <img class=\"center\" src=\"/video_feed\" id=\"videoElement\">\n",
" </div>\n",
"</div>\n",
"\n",
"<!-- Terminal -->\n",
"<div class=\"col-span-2 mr-4\">\n",
" <h2 class=\"border-b border-slate-800 py-4 mb-4 text-3xl flex justify-end font-bold leading-none tracking-tight md:text-4xl lg:text-4xl text-cyan-100 \">Output</h1>\n",
" <div id=\"terminal\" class=\"w-full\"></div>\n",
"</div>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### For toggle switch"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"<div class=\"flex gap-3 mb-4\">\n",
" <label class=\"switch\">\n",
" <input id=\"turn_off\" value=\"1\" name=\"turn_off\" type=\"checkbox\" onclick=\"toggleOffSwitch()\"/>\n",
" <span class=\"slider round\"></span>\n",
" </label>\n",
" <label for=\"turn_off\" class=\"form-label text-cyan-500\">Show Video</label><br>\n",
"</div>\n",
"<div class=\"flex gap-3 mb-4\">\n",
" <label class=\"switch\">\n",
" <input id=\"run_detection\" value=\"0\" name=\"run_detection\" type=\"checkbox\"\n",
" onclick=\"toggleDetSwitch()\"/>\n",
" <span class=\"slider round\"></span>\n",
" </label>\n",
" <label for=\"run_detection\" class=\"form-label text-cyan-500\">Run Detection</label><br>\n",
"</div>\n",
"<div class=\"flex gap-3 mb-4\">\n",
" <label class=\"switch\">\n",
" <input id=\"mediapipe\" value=\"0\" name=\"mediapipe\" type=\"checkbox\"\n",
" onclick=\"toggleMediaPipeSwitch()\"/>\n",
" <span class=\"slider round\"></span>\n",
" </label>\n",
" <label for=\"mediapipe\" class=\"form-label text-cyan-500\">Show Landmark</label><br>\n",
"</div>\n",
"<div class=\"flex gap-3 mb-4\">\n",
" <label class=\"switch\">\n",
" <input id=\"flip-horizontal\" value=\"0\" name=\"flip-horizontal\" type=\"checkbox\"\n",
" onclick=\"toggleHSwitch()\"/>\n",
" <span class=\"slider round\"></span>\n",
" </label>\n",
" <label for=\"flip-horizontal\" class=\"form-label text-cyan-500\">Flip Video</label><br>\n",
"</div>\n",
"\n",
"<div class=\"gap-3 py-4 text-center border-b border-slate-800 mb-5\">\n",
" <form action=\"/\" method=\"POST\" style=\"text-align: center;\" class=\"mb-4\" >\n",
" <label for=\"slider\" class=\"form-label text-cyan-500\">Confidence Threshold</label>\n",
" <input type=\"range\" id=\"slider\" name=\"slider\" min=\"1\" max=\"100\">\n",
" </form>\n",
" <input type=\"hidden\" id=\"sliderValue\" name=\"sliderValue\" value=\"75\">\n",
" <span class=\"rounded-lg py-2 px-3 bg-slate-800 text-cyan-500\" id=\"conf_display\">75</span>\n",
"</div>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### For Final Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"<div>\n",
" <p id=\"finalSentencePara\" class=\"text-cyan-200 mt-4 text-center\">\n",
" </p>\n",
"</div>"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|