Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +15 -16
src/streamlit_app.py
CHANGED
|
@@ -4,6 +4,7 @@ import torch
|
|
| 4 |
import pickle
|
| 5 |
import numpy as np
|
| 6 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
| 7 |
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
|
| 8 |
from PyPDF2 import PdfReader
|
| 9 |
import json
|
|
@@ -52,7 +53,7 @@ JSON_TEMPLATE = {
|
|
| 52 |
|
| 53 |
# --- Load Model ---
|
| 54 |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
| 55 |
-
model =
|
| 56 |
|
| 57 |
def mean_pooling(model_output, attention_mask):
|
| 58 |
token_embeddings = model_output[0]
|
|
@@ -60,26 +61,24 @@ def mean_pooling(model_output, attention_mask):
|
|
| 60 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 61 |
|
| 62 |
def embed_text(texts):
|
| 63 |
-
# encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
|
| 64 |
-
# with torch.no_grad():
|
| 65 |
-
# model_output = model(**encoded_input)
|
| 66 |
-
# return mean_pooling(model_output, encoded_input['attention_mask']).cpu().numpy()
|
| 67 |
|
| 68 |
-
# Use the correct device
|
| 69 |
-
device = torch.device("cpu") # or "cuda" if you have a GPU
|
| 70 |
|
| 71 |
-
# Move model to the correct device
|
| 72 |
-
model.to(device)
|
| 73 |
|
| 74 |
-
# Prepare the inputs
|
| 75 |
-
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt').to(device)
|
| 76 |
|
| 77 |
-
# Generate embeddings
|
| 78 |
-
with torch.no_grad():
|
| 79 |
-
|
| 80 |
|
| 81 |
-
# Return embeddings as numpy array
|
| 82 |
-
return mean_pooling(model_output, encoded_input['attention_mask']).cpu().numpy()
|
|
|
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
# --- Load & Chunk Text ---
|
|
|
|
| 4 |
import pickle
|
| 5 |
import numpy as np
|
| 6 |
from transformers import AutoTokenizer, AutoModel
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
|
| 9 |
from PyPDF2 import PdfReader
|
| 10 |
import json
|
|
|
|
| 53 |
|
| 54 |
# --- Load Model ---
|
| 55 |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
| 56 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 57 |
|
| 58 |
def mean_pooling(model_output, attention_mask):
|
| 59 |
token_embeddings = model_output[0]
|
|
|
|
| 61 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 62 |
|
| 63 |
def embed_text(texts):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# # Use the correct device
|
| 66 |
+
# device = torch.device("cpu") # or "cuda" if you have a GPU
|
| 67 |
|
| 68 |
+
# # Move model to the correct device
|
| 69 |
+
# model.to(device)
|
| 70 |
|
| 71 |
+
# # Prepare the inputs
|
| 72 |
+
# encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt').to(device)
|
| 73 |
|
| 74 |
+
# # Generate embeddings
|
| 75 |
+
# with torch.no_grad():
|
| 76 |
+
# model_output = model(**encoded_input)
|
| 77 |
|
| 78 |
+
# # Return embeddings as numpy array
|
| 79 |
+
# return mean_pooling(model_output, encoded_input['attention_mask']).cpu().numpy()
|
| 80 |
+
embeddings = model.encode(texts)
|
| 81 |
+
return embeddings
|
| 82 |
|
| 83 |
|
| 84 |
# --- Load & Chunk Text ---
|