AvocadoMuffin's picture
Create train.py
d9f65dd verified
raw
history blame
9.61 kB
import torch, gc, os, numpy as np, evaluate, json
from datasets import load_dataset
from transformers import (
AutoTokenizer, AutoModelForQuestionAnswering,
TrainingArguments, Trainer, default_data_collator
)
from peft import LoraConfig, get_peft_model, TaskType
from huggingface_hub import login
import sys
def main():
# Get model name from environment
model_name = os.environ.get('MODEL_NAME', 'roberta-cuad-qa')
# Login to HF Hub
hf_token = os.environ.get('roberta_token')
if hf_token:
login(token=hf_token)
print("βœ… Logged into Hugging Face Hub")
else:
print("⚠️ No HF_TOKEN found - model won't be pushed to Hub")
# Setup
torch.cuda.empty_cache()
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"πŸ”§ Using device: {device}")
if torch.cuda.is_available():
print(f"🎯 GPU: {torch.cuda.get_device_name()}")
print(f"πŸ’Ύ GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
# Load and prepare data
print("πŸ“š Loading CUAD dataset...")
raw = load_dataset("theatticusproject/cuad-qa", split="train", trust_remote_code=True)
# Use subset for faster training on free GPU
N = 2000
raw = raw.shuffle(seed=42).select(range(min(N, len(raw))))
ds = raw.train_test_split(test_size=0.1, seed=42)
train_ds, val_ds = ds["train"], ds["test"]
print(f"βœ… Data loaded - Train: {len(train_ds)}, Val: {len(val_ds)}")
# Store original validation data for metrics
original_val_data = [ex["answers"] for ex in val_ds]
# Load model and tokenizer
print("πŸ€– Loading RoBERTa model...")
base_model = "roberta-base"
tok = AutoTokenizer.from_pretrained(base_model, use_fast=True)
model = AutoModelForQuestionAnswering.from_pretrained(base_model)
# Add LoRA
print("πŸ”§ Adding LoRA adapters...")
lora_cfg = LoraConfig(
task_type=TaskType.QUESTION_ANS,
target_modules=["query", "value"],
r=16,
lora_alpha=32, # Improved scaling
lora_dropout=0.05,
)
model = get_peft_model(model, lora_cfg)
model.print_trainable_parameters()
model.to(device)
# Tokenization function
max_len, doc_stride = 384, 128
def preprocess(examples):
tok_batch = tok(
examples["question"],
examples["context"],
truncation="only_second",
max_length=max_len,
stride=doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
sample_map = tok_batch.pop("overflow_to_sample_mapping")
offset_map = tok_batch.pop("offset_mapping")
start_pos, end_pos = [], []
for i, offsets in enumerate(offset_map):
cls_idx = tok_batch["input_ids"][i].index(tok.cls_token_id)
sample_idx = sample_map[i]
answer = examples["answers"][sample_idx]
if len(answer["answer_start"]) == 0:
start_pos.append(cls_idx)
end_pos.append(cls_idx)
continue
s_char = answer["answer_start"][0]
e_char = s_char + len(answer["text"][0])
seq_ids = tok_batch.sequence_ids(i)
c0, c1 = seq_ids.index(1), len(seq_ids) - 1 - seq_ids[::-1].index(1)
if not (offsets[c0][0] <= s_char <= offsets[c1][1]):
start_pos.append(cls_idx)
end_pos.append(cls_idx)
continue
st = c0
while st <= c1 and offsets[st][0] <= s_char:
st += 1
en = c1
while en >= c0 and offsets[en][1] >= e_char:
en -= 1
# Fixed position calculation with bounds checking
start_pos.append(max(c0, min(st - 1, c1)))
end_pos.append(max(c0, min(en + 1, c1)))
tok_batch["start_positions"] = start_pos
tok_batch["end_positions"] = end_pos
return tok_batch
# Tokenize datasets
print("πŸ”„ Tokenizing datasets...")
train_tok = train_ds.map(
preprocess, batched=True, batch_size=100,
remove_columns=train_ds.column_names,
desc="Tokenizing train"
)
val_tok = val_ds.map(
preprocess, batched=True, batch_size=100,
remove_columns=val_ds.column_names,
desc="Tokenizing validation"
)
# Clean up memory
del raw, ds, train_ds, val_ds
gc.collect()
torch.cuda.empty_cache()
# Metrics setup
metric = evaluate.load("squad")
def postprocess(preds, dataset):
starts, ends = preds
answers = []
for i in range(len(starts)):
a, b = int(np.argmax(starts[i])), int(np.argmax(ends[i]))
if a > b: a, b = b, a
text = tok.decode(dataset[i]["input_ids"][a:b+1], skip_special_tokens=True)
answers.append(text.strip())
return answers
def compute_metrics(eval_pred):
try:
preds, _ = eval_pred
texts = postprocess(preds, val_tok)
predictions = [{"id": str(i), "prediction_text": t} for i, t in enumerate(texts)]
references = [{"id": str(i), "answers": ans} for i, ans in enumerate(original_val_data)]
return metric.compute(predictions=predictions, references=references)
except Exception as e:
print(f"⚠️ Metrics computation failed: {e}")
return {"exact_match": 0.0, "f1": 0.0}
# Training arguments
output_dir = "./model_output"
args = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=2,
per_device_eval_batch_size=4,
gradient_accumulation_steps=8,
num_train_epochs=2,
learning_rate=5e-4,
lr_scheduler_type="cosine",
warmup_ratio=0.1,
fp16=True,
eval_strategy="steps",
eval_steps=250,
save_steps=500,
save_total_limit=2,
logging_steps=50,
weight_decay=0.01,
remove_unused_columns=True,
report_to=None,
push_to_hub=False, # We'll do this manually
dataloader_pin_memory=False, # Save memory
)
# Create trainer
trainer = Trainer(
model=model,
args=args,
train_dataset=train_tok,
eval_dataset=val_tok,
tokenizer=tok,
data_collator=default_data_collator,
compute_metrics=compute_metrics,
)
print(f"πŸš€ Starting training...")
print(f"πŸ“Š Total training samples: {len(train_tok)}")
print(f"πŸ“Š Total validation samples: {len(val_tok)}")
if torch.cuda.is_available():
print(f"πŸ’Ύ GPU memory before training: {torch.cuda.memory_allocated()/1024**3:.2f} GB")
# Training loop with error handling
try:
trainer.train()
print("βœ… Training completed successfully!")
except RuntimeError as e:
if "CUDA out of memory" in str(e):
print("⚠️ GPU OOM - reducing batch size and retrying...")
torch.cuda.empty_cache()
gc.collect()
# Reduce batch size
args.per_device_train_batch_size = 1
args.gradient_accumulation_steps = 16
trainer = Trainer(
model=model, args=args,
train_dataset=train_tok, eval_dataset=val_tok,
tokenizer=tok, data_collator=default_data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
print("βœ… Training completed with reduced batch size!")
else:
raise e
# Save model locally first
print("πŸ’Ύ Saving model locally...")
os.makedirs(output_dir, exist_ok=True)
trainer.model.save_pretrained(output_dir)
tok.save_pretrained(output_dir)
# Save training info
training_info = {
"model_name": model_name,
"base_model": base_model,
"dataset": "theatticusproject/cuad-qa",
"lora_config": {
"r": lora_cfg.r,
"lora_alpha": lora_cfg.lora_alpha,
"target_modules": lora_cfg.target_modules,
"lora_dropout": lora_cfg.lora_dropout,
},
"training_samples": len(train_tok),
"validation_samples": len(val_tok),
}
with open(os.path.join(output_dir, "training_info.json"), "w") as f:
json.dump(training_info, f, indent=2)
# Push to Hub if token available
if hf_token:
try:
print(f"⬆️ Pushing model to Hub: {model_name}")
trainer.model.push_to_hub(model_name, private=False)
tok.push_to_hub(model_name, private=False)
# Also push training info
from huggingface_hub import upload_file
upload_file(
path_or_fileobj=os.path.join(output_dir, "training_info.json"),
path_in_repo="training_info.json",
repo_id=model_name,
repo_type="model"
)
print(f"πŸŽ‰ Model successfully saved to: https://huggingface.co/{model_name}")
except Exception as e:
print(f"❌ Failed to push to Hub: {e}")
print("πŸ’Ύ Model saved locally in ./model_output/")
else:
print("πŸ’Ύ Model saved locally in ./model_output/ (no HF token for Hub upload)")
print("🏁 Training pipeline completed!")
if __name__ == "__main__":
main()