Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -53,6 +53,14 @@ def exact_match_score(prediction, ground_truth):
|
|
53 |
"""Calculate exact match score"""
|
54 |
return normalize_answer(prediction) == normalize_answer(ground_truth)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def evaluate_model():
|
57 |
# Authenticate with Hugging Face using the token
|
58 |
hf_token = os.getenv("EVAL_TOKEN")
|
@@ -78,6 +86,21 @@ def evaluate_model():
|
|
78 |
print(f"β Error loading model: {e}")
|
79 |
return None, None
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
def run_evaluation(num_samples, progress=gr.Progress()):
|
82 |
"""Run evaluation and return results for Gradio interface"""
|
83 |
|
@@ -88,20 +111,33 @@ def run_evaluation(num_samples, progress=gr.Progress()):
|
|
88 |
|
89 |
progress(0.1, desc="Loading CUAD dataset...")
|
90 |
|
91 |
-
# Load dataset -
|
|
|
|
|
|
|
92 |
try:
|
93 |
-
# Try
|
94 |
-
|
|
|
95 |
test_data = dataset["test"]
|
96 |
-
print(f"β Loaded CUAD
|
|
|
|
|
|
|
|
|
97 |
except Exception as e:
|
|
|
98 |
try:
|
99 |
-
#
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
103 |
except Exception as e2:
|
104 |
-
return f"β Error loading dataset: {e2}", pd.DataFrame(), None
|
|
|
|
|
|
|
105 |
|
106 |
# Limit samples
|
107 |
num_samples = min(num_samples, len(test_data))
|
@@ -119,23 +155,53 @@ def run_evaluation(num_samples, progress=gr.Progress()):
|
|
119 |
progress((0.2 + 0.7 * i / num_samples), desc=f"Processing sample {i+1}/{num_samples}")
|
120 |
|
121 |
try:
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
#
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
#
|
131 |
-
if
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
# Calculate metrics
|
137 |
-
em = exact_match_score
|
138 |
-
f1 = f1_score_qa
|
139 |
|
140 |
exact_matches.append(em)
|
141 |
f1_scores.append(f1)
|
@@ -143,11 +209,12 @@ def run_evaluation(num_samples, progress=gr.Progress()):
|
|
143 |
predictions.append({
|
144 |
"Sample_ID": i+1,
|
145 |
"Question": question[:100] + "..." if len(question) > 100 else question,
|
146 |
-
"Predicted_Answer": predicted_answer,
|
147 |
-
"Ground_Truth":
|
|
|
148 |
"Exact_Match": em,
|
149 |
"F1_Score": round(f1, 3),
|
150 |
-
"Confidence": round(
|
151 |
})
|
152 |
|
153 |
except Exception as e:
|
@@ -163,24 +230,36 @@ def run_evaluation(num_samples, progress=gr.Progress()):
|
|
163 |
avg_exact_match = np.mean(exact_matches) * 100
|
164 |
avg_f1_score = np.mean(f1_scores) * 100
|
165 |
|
|
|
|
|
|
|
|
|
|
|
166 |
# Create results summary
|
167 |
results_summary = f"""
|
168 |
# π CUAD Model Evaluation Results
|
169 |
-
|
170 |
## π― Overall Performance
|
171 |
- **Model**: AvocadoMuffin/roberta-cuad-qa-v3
|
172 |
- **Dataset**: CUAD (Contract Understanding Atticus Dataset)
|
173 |
- **Samples Evaluated**: {len(exact_matches)}
|
174 |
- **Evaluation Date**: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
|
175 |
|
176 |
-
## π Metrics
|
177 |
- **Exact Match Score**: {avg_exact_match:.2f}%
|
178 |
- **F1 Score**: {avg_f1_score:.2f}%
|
179 |
|
180 |
## π Performance Analysis
|
181 |
-
- **High Confidence Predictions
|
182 |
-
- **Perfect Matches**: {len(
|
183 |
-
- **High F1 Scores (>0.8)**: {len(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
"""
|
185 |
|
186 |
# Create detailed results DataFrame
|
@@ -197,7 +276,13 @@ def run_evaluation(num_samples, progress=gr.Progress()):
|
|
197 |
"exact_match_score": avg_exact_match,
|
198 |
"f1_score": avg_f1_score,
|
199 |
"evaluation_date": datetime.now().isoformat(),
|
200 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
}
|
202 |
|
203 |
try:
|
@@ -220,7 +305,7 @@ def create_gradio_interface():
|
|
220 |
<div style="text-align: center; padding: 20px;">
|
221 |
<h1>ποΈ CUAD Model Evaluation Dashboard</h1>
|
222 |
<p>Evaluate your CUAD (Contract Understanding Atticus Dataset) Question Answering model</p>
|
223 |
-
<p><strong>Model:</strong> AvocadoMuffin/roberta-cuad-qa-
|
224 |
</div>
|
225 |
""")
|
226 |
|
@@ -250,6 +335,7 @@ def create_gradio_interface():
|
|
250 |
<li><strong>Exact Match</strong>: Percentage of perfect predictions</li>
|
251 |
<li><strong>F1 Score</strong>: Token-level overlap between prediction and ground truth</li>
|
252 |
<li><strong>Confidence</strong>: Model's confidence in its predictions</li>
|
|
|
253 |
</ul>
|
254 |
</div>
|
255 |
""")
|
|
|
53 |
"""Calculate exact match score"""
|
54 |
return normalize_answer(prediction) == normalize_answer(ground_truth)
|
55 |
|
56 |
+
def max_over_ground_truths(metric_fn, prediction, ground_truths):
|
57 |
+
"""Calculate maximum score over all ground truth answers"""
|
58 |
+
scores = []
|
59 |
+
for ground_truth in ground_truths:
|
60 |
+
score = metric_fn(prediction, ground_truth)
|
61 |
+
scores.append(score)
|
62 |
+
return max(scores) if scores else 0
|
63 |
+
|
64 |
def evaluate_model():
|
65 |
# Authenticate with Hugging Face using the token
|
66 |
hf_token = os.getenv("EVAL_TOKEN")
|
|
|
86 |
print(f"β Error loading model: {e}")
|
87 |
return None, None
|
88 |
|
89 |
+
def inspect_dataset_structure(dataset, num_samples=3):
|
90 |
+
"""Inspect dataset structure for debugging"""
|
91 |
+
print(f"Dataset structure inspection:")
|
92 |
+
print(f"Dataset type: {type(dataset)}")
|
93 |
+
print(f"Dataset length: {len(dataset)}")
|
94 |
+
|
95 |
+
if len(dataset) > 0:
|
96 |
+
sample = dataset[0]
|
97 |
+
print(f"Sample keys: {list(sample.keys()) if isinstance(sample, dict) else 'Not a dict'}")
|
98 |
+
print(f"Sample structure:")
|
99 |
+
for key, value in sample.items():
|
100 |
+
print(f" {key}: {type(value)} - {str(value)[:100]}...")
|
101 |
+
|
102 |
+
return dataset
|
103 |
+
|
104 |
def run_evaluation(num_samples, progress=gr.Progress()):
|
105 |
"""Run evaluation and return results for Gradio interface"""
|
106 |
|
|
|
111 |
|
112 |
progress(0.1, desc="Loading CUAD dataset...")
|
113 |
|
114 |
+
# Load dataset - try multiple approaches
|
115 |
+
dataset = None
|
116 |
+
test_data = None
|
117 |
+
|
118 |
try:
|
119 |
+
# Try cuad dataset directly
|
120 |
+
print("Attempting to load CUAD dataset...")
|
121 |
+
dataset = load_dataset("cuad", token=hf_token)
|
122 |
test_data = dataset["test"]
|
123 |
+
print(f"β Loaded CUAD dataset with {len(test_data)} samples")
|
124 |
+
|
125 |
+
# Inspect structure
|
126 |
+
test_data = inspect_dataset_structure(test_data)
|
127 |
+
|
128 |
except Exception as e:
|
129 |
+
print(f"Error loading CUAD dataset: {e}")
|
130 |
try:
|
131 |
+
# Try squad format as fallback
|
132 |
+
print("Trying SQuAD format...")
|
133 |
+
dataset = load_dataset("squad", split="validation", token=hf_token)
|
134 |
+
test_data = dataset.select(range(min(1000, len(dataset))))
|
135 |
+
print(f"β Loaded SQuAD dataset as fallback with {len(test_data)} samples")
|
136 |
except Exception as e2:
|
137 |
+
return f"β Error loading any dataset: {e2}", pd.DataFrame(), None
|
138 |
+
|
139 |
+
if test_data is None:
|
140 |
+
return "β No test data available", pd.DataFrame(), None
|
141 |
|
142 |
# Limit samples
|
143 |
num_samples = min(num_samples, len(test_data))
|
|
|
155 |
progress((0.2 + 0.7 * i / num_samples), desc=f"Processing sample {i+1}/{num_samples}")
|
156 |
|
157 |
try:
|
158 |
+
# Handle different dataset formats
|
159 |
+
if "context" in example:
|
160 |
+
context = example["context"]
|
161 |
+
elif "text" in example:
|
162 |
+
context = example["text"]
|
163 |
+
else:
|
164 |
+
print(f"Warning: No context found in sample {i}")
|
165 |
+
continue
|
166 |
+
|
167 |
+
if "question" in example:
|
168 |
+
question = example["question"]
|
169 |
+
elif "title" in example:
|
170 |
+
question = example["title"]
|
171 |
+
else:
|
172 |
+
print(f"Warning: No question found in sample {i}")
|
173 |
+
continue
|
174 |
|
175 |
+
# Handle answers field
|
176 |
+
ground_truths = []
|
177 |
+
if "answers" in example:
|
178 |
+
answers = example["answers"]
|
179 |
+
if isinstance(answers, dict):
|
180 |
+
if "text" in answers:
|
181 |
+
if isinstance(answers["text"], list):
|
182 |
+
ground_truths = [ans for ans in answers["text"] if ans.strip()]
|
183 |
+
else:
|
184 |
+
ground_truths = [answers["text"]] if answers["text"].strip() else []
|
185 |
+
elif isinstance(answers, list):
|
186 |
+
ground_truths = answers
|
187 |
|
188 |
+
# Skip if no ground truth
|
189 |
+
if not ground_truths:
|
190 |
+
print(f"Warning: No ground truth found for sample {i}")
|
191 |
+
continue
|
192 |
+
|
193 |
+
# Get model prediction
|
194 |
+
try:
|
195 |
+
result = qa_pipeline(question=question, context=context)
|
196 |
+
predicted_answer = result["answer"]
|
197 |
+
confidence = result["score"]
|
198 |
+
except Exception as e:
|
199 |
+
print(f"Error getting prediction for sample {i}: {e}")
|
200 |
+
continue
|
201 |
|
202 |
+
# Calculate metrics using max over ground truths
|
203 |
+
em = max_over_ground_truths(exact_match_score, predicted_answer, ground_truths)
|
204 |
+
f1 = max_over_ground_truths(f1_score_qa, predicted_answer, ground_truths)
|
205 |
|
206 |
exact_matches.append(em)
|
207 |
f1_scores.append(f1)
|
|
|
209 |
predictions.append({
|
210 |
"Sample_ID": i+1,
|
211 |
"Question": question[:100] + "..." if len(question) > 100 else question,
|
212 |
+
"Predicted_Answer": predicted_answer[:100] + "..." if len(predicted_answer) > 100 else predicted_answer,
|
213 |
+
"Ground_Truth": ground_truths[0][:100] + "..." if len(ground_truths[0]) > 100 else ground_truths[0],
|
214 |
+
"Num_Ground_Truths": len(ground_truths),
|
215 |
"Exact_Match": em,
|
216 |
"F1_Score": round(f1, 3),
|
217 |
+
"Confidence": round(confidence, 3)
|
218 |
})
|
219 |
|
220 |
except Exception as e:
|
|
|
230 |
avg_exact_match = np.mean(exact_matches) * 100
|
231 |
avg_f1_score = np.mean(f1_scores) * 100
|
232 |
|
233 |
+
# Calculate additional statistics
|
234 |
+
high_confidence_samples = [p for p in predictions if p['Confidence'] > 0.8]
|
235 |
+
perfect_matches = [p for p in predictions if p['Exact_Match'] == 1]
|
236 |
+
high_f1_samples = [p for p in predictions if p['F1_Score'] > 0.8]
|
237 |
+
|
238 |
# Create results summary
|
239 |
results_summary = f"""
|
240 |
# π CUAD Model Evaluation Results
|
|
|
241 |
## π― Overall Performance
|
242 |
- **Model**: AvocadoMuffin/roberta-cuad-qa-v3
|
243 |
- **Dataset**: CUAD (Contract Understanding Atticus Dataset)
|
244 |
- **Samples Evaluated**: {len(exact_matches)}
|
245 |
- **Evaluation Date**: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
|
246 |
|
247 |
+
## π Core Metrics
|
248 |
- **Exact Match Score**: {avg_exact_match:.2f}%
|
249 |
- **F1 Score**: {avg_f1_score:.2f}%
|
250 |
|
251 |
## π Performance Analysis
|
252 |
+
- **High Confidence Predictions (>0.8)**: {len(high_confidence_samples)} ({len(high_confidence_samples)/len(predictions)*100:.1f}%)
|
253 |
+
- **Perfect Matches**: {len(perfect_matches)} ({len(perfect_matches)/len(predictions)*100:.1f}%)
|
254 |
+
- **High F1 Scores (>0.8)**: {len(high_f1_samples)} ({len(high_f1_samples)/len(predictions)*100:.1f}%)
|
255 |
+
|
256 |
+
## π Distribution
|
257 |
+
- **Average Confidence**: {np.mean([p['Confidence'] for p in predictions]):.3f}
|
258 |
+
- **Median F1 Score**: {np.median([p['F1_Score'] for p in predictions]):.3f}
|
259 |
+
- **Samples with Multiple Ground Truths**: {len([p for p in predictions if p['Num_Ground_Truths'] > 1])}
|
260 |
+
|
261 |
+
## π― Evaluation Quality
|
262 |
+
The evaluation accounts for multiple ground truth answers where available, using the maximum score across all valid answers for each question.
|
263 |
"""
|
264 |
|
265 |
# Create detailed results DataFrame
|
|
|
276 |
"exact_match_score": avg_exact_match,
|
277 |
"f1_score": avg_f1_score,
|
278 |
"evaluation_date": datetime.now().isoformat(),
|
279 |
+
"evaluation_methodology": "max_over_ground_truths",
|
280 |
+
"predictions": predictions,
|
281 |
+
"summary_stats": {
|
282 |
+
"avg_confidence": float(np.mean([p['Confidence'] for p in predictions])),
|
283 |
+
"median_f1": float(np.median([p['F1_Score'] for p in predictions])),
|
284 |
+
"samples_with_multiple_ground_truths": len([p for p in predictions if p['Num_Ground_Truths'] > 1])
|
285 |
+
}
|
286 |
}
|
287 |
|
288 |
try:
|
|
|
305 |
<div style="text-align: center; padding: 20px;">
|
306 |
<h1>ποΈ CUAD Model Evaluation Dashboard</h1>
|
307 |
<p>Evaluate your CUAD (Contract Understanding Atticus Dataset) Question Answering model</p>
|
308 |
+
<p><strong>Model:</strong> AvocadoMuffin/roberta-cuad-qa-v3</p>
|
309 |
</div>
|
310 |
""")
|
311 |
|
|
|
335 |
<li><strong>Exact Match</strong>: Percentage of perfect predictions</li>
|
336 |
<li><strong>F1 Score</strong>: Token-level overlap between prediction and ground truth</li>
|
337 |
<li><strong>Confidence</strong>: Model's confidence in its predictions</li>
|
338 |
+
<li><strong>Max-over-GT</strong>: Best score across multiple ground truth answers</li>
|
339 |
</ul>
|
340 |
</div>
|
341 |
""")
|