Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
from datasets import load_dataset
|
5 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
|
6 |
+
import torch
|
7 |
+
from sklearn.metrics import f1_score
|
8 |
+
import re
|
9 |
+
from collections import Counter
|
10 |
+
import string
|
11 |
+
from huggingface_hub import login
|
12 |
+
import gradio as gr
|
13 |
+
import pandas as pd
|
14 |
+
from datetime import datetime
|
15 |
+
|
16 |
+
def normalize_answer(s):
|
17 |
+
"""Normalize answer for evaluation"""
|
18 |
+
def remove_articles(text):
|
19 |
+
return re.sub(r'\b(a|an|the)\b', ' ', text)
|
20 |
+
|
21 |
+
def white_space_fix(text):
|
22 |
+
return ' '.join(text.split())
|
23 |
+
|
24 |
+
def remove_punc(text):
|
25 |
+
exclude = set(string.punctuation)
|
26 |
+
return ''.join(ch for ch in text if ch not in exclude)
|
27 |
+
|
28 |
+
def lower(text):
|
29 |
+
return text.lower()
|
30 |
+
|
31 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
32 |
+
|
33 |
+
def f1_score_qa(prediction, ground_truth):
|
34 |
+
"""Calculate F1 score for QA"""
|
35 |
+
prediction_tokens = normalize_answer(prediction).split()
|
36 |
+
ground_truth_tokens = normalize_answer(ground_truth).split()
|
37 |
+
|
38 |
+
if len(prediction_tokens) == 0 or len(ground_truth_tokens) == 0:
|
39 |
+
return int(prediction_tokens == ground_truth_tokens)
|
40 |
+
|
41 |
+
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
42 |
+
num_same = sum(common.values())
|
43 |
+
|
44 |
+
if num_same == 0:
|
45 |
+
return 0
|
46 |
+
|
47 |
+
precision = 1.0 * num_same / len(prediction_tokens)
|
48 |
+
recall = 1.0 * num_same / len(ground_truth_tokens)
|
49 |
+
f1 = (2 * precision * recall) / (precision + recall)
|
50 |
+
return f1
|
51 |
+
|
52 |
+
def exact_match_score(prediction, ground_truth):
|
53 |
+
"""Calculate exact match score"""
|
54 |
+
return normalize_answer(prediction) == normalize_answer(ground_truth)
|
55 |
+
|
56 |
+
def evaluate_model():
|
57 |
+
# Authenticate with Hugging Face using the token
|
58 |
+
hf_token = os.getenv("EVAL_TOKEN")
|
59 |
+
if hf_token:
|
60 |
+
try:
|
61 |
+
login(token=hf_token)
|
62 |
+
print("β Authenticated with Hugging Face")
|
63 |
+
except Exception as e:
|
64 |
+
print(f"β Warning: Could not authenticate with HF token: {e}")
|
65 |
+
else:
|
66 |
+
print("β Warning: EVAL_TOKEN not found in environment variables")
|
67 |
+
|
68 |
+
print("Loading model and tokenizer...")
|
69 |
+
model_name = "AvocadoMuffin/roberta-cuad-qa-v2"
|
70 |
+
|
71 |
+
try:
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
73 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name, token=hf_token)
|
74 |
+
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
75 |
+
print("β Model loaded successfully")
|
76 |
+
return qa_pipeline, hf_token
|
77 |
+
except Exception as e:
|
78 |
+
print(f"β Error loading model: {e}")
|
79 |
+
return None, None
|
80 |
+
|
81 |
+
def run_evaluation(num_samples, progress=gr.Progress()):
|
82 |
+
"""Run evaluation and return results for Gradio interface"""
|
83 |
+
|
84 |
+
# Load model
|
85 |
+
qa_pipeline, hf_token = evaluate_model()
|
86 |
+
if qa_pipeline is None:
|
87 |
+
return "β Failed to load model", "", ""
|
88 |
+
|
89 |
+
progress(0.1, desc="Loading CUAD dataset...")
|
90 |
+
|
91 |
+
# Load dataset
|
92 |
+
try:
|
93 |
+
dataset = load_dataset("cuad", trust_remote_code=True, token=hf_token)
|
94 |
+
test_data = dataset["test"]
|
95 |
+
except Exception as e:
|
96 |
+
try:
|
97 |
+
dataset = load_dataset("theatticusproject/cuad", trust_remote_code=True, token=hf_token)
|
98 |
+
test_data = dataset["test"]
|
99 |
+
except Exception as e2:
|
100 |
+
return f"β Error loading dataset: {e2}", "", ""
|
101 |
+
|
102 |
+
# Limit samples
|
103 |
+
num_samples = min(num_samples, len(test_data))
|
104 |
+
test_subset = test_data.select(range(num_samples))
|
105 |
+
|
106 |
+
progress(0.2, desc=f"Starting evaluation on {num_samples} samples...")
|
107 |
+
|
108 |
+
# Initialize metrics
|
109 |
+
exact_matches = []
|
110 |
+
f1_scores = []
|
111 |
+
predictions = []
|
112 |
+
|
113 |
+
# Run evaluation
|
114 |
+
for i, example in enumerate(test_subset):
|
115 |
+
progress((0.2 + 0.7 * i / num_samples), desc=f"Processing sample {i+1}/{num_samples}")
|
116 |
+
|
117 |
+
try:
|
118 |
+
context = example["context"]
|
119 |
+
question = example["question"]
|
120 |
+
answers = example["answers"]
|
121 |
+
|
122 |
+
# Get model prediction
|
123 |
+
result = qa_pipeline(question=question, context=context)
|
124 |
+
predicted_answer = result["answer"]
|
125 |
+
|
126 |
+
# Get ground truth answers
|
127 |
+
if answers["text"] and len(answers["text"]) > 0:
|
128 |
+
ground_truth = answers["text"][0] if isinstance(answers["text"], list) else answers["text"]
|
129 |
+
else:
|
130 |
+
ground_truth = ""
|
131 |
+
|
132 |
+
# Calculate metrics
|
133 |
+
em = exact_match_score(predicted_answer, ground_truth)
|
134 |
+
f1 = f1_score_qa(predicted_answer, ground_truth)
|
135 |
+
|
136 |
+
exact_matches.append(em)
|
137 |
+
f1_scores.append(f1)
|
138 |
+
|
139 |
+
predictions.append({
|
140 |
+
"Sample_ID": i+1,
|
141 |
+
"Question": question[:100] + "..." if len(question) > 100 else question,
|
142 |
+
"Predicted_Answer": predicted_answer,
|
143 |
+
"Ground_Truth": ground_truth,
|
144 |
+
"Exact_Match": em,
|
145 |
+
"F1_Score": round(f1, 3),
|
146 |
+
"Confidence": round(result["score"], 3)
|
147 |
+
})
|
148 |
+
|
149 |
+
except Exception as e:
|
150 |
+
continue
|
151 |
+
|
152 |
+
progress(0.9, desc="Calculating final metrics...")
|
153 |
+
|
154 |
+
# Calculate final metrics
|
155 |
+
avg_exact_match = np.mean(exact_matches) * 100
|
156 |
+
avg_f1_score = np.mean(f1_scores) * 100
|
157 |
+
|
158 |
+
# Create results summary
|
159 |
+
results_summary = f"""
|
160 |
+
# π CUAD Model Evaluation Results
|
161 |
+
|
162 |
+
## π― Overall Performance
|
163 |
+
- **Model**: AvocadoMuffin/roberta-cuad-qa-v2
|
164 |
+
- **Dataset**: CUAD (Contract Understanding Atticus Dataset)
|
165 |
+
- **Samples Evaluated**: {len(exact_matches)}
|
166 |
+
- **Evaluation Date**: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
|
167 |
+
|
168 |
+
## π Metrics
|
169 |
+
- **Exact Match Score**: {avg_exact_match:.2f}%
|
170 |
+
- **F1 Score**: {avg_f1_score:.2f}%
|
171 |
+
|
172 |
+
## π Performance Analysis
|
173 |
+
- **High Confidence Predictions**: {len([p for p in predictions if p['Confidence'] > 0.8])} ({len([p for p in predictions if p['Confidence'] > 0.8])/len(predictions)*100:.1f}%)
|
174 |
+
- **Perfect Matches**: {len([p for p in predictions if p['Exact_Match'] == 1])} ({len([p for p in predictions if p['Exact_Match'] == 1])/len(predictions)*100:.1f}%)
|
175 |
+
- **High F1 Scores (>0.8)**: {len([p for p in predictions if p['F1_Score'] > 0.8])} ({len([p for p in predictions if p['F1_Score'] > 0.8])/len(predictions)*100:.1f}%)
|
176 |
+
"""
|
177 |
+
|
178 |
+
# Create detailed results DataFrame
|
179 |
+
df = pd.DataFrame(predictions)
|
180 |
+
|
181 |
+
# Save results
|
182 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
183 |
+
results_file = f"cuad_evaluation_results_{timestamp}.json"
|
184 |
+
|
185 |
+
detailed_results = {
|
186 |
+
"model_name": "AvocadoMuffin/roberta-cuad-qa-v2",
|
187 |
+
"dataset": "cuad",
|
188 |
+
"num_samples": len(exact_matches),
|
189 |
+
"exact_match_score": avg_exact_match,
|
190 |
+
"f1_score": avg_f1_score,
|
191 |
+
"evaluation_date": datetime.now().isoformat(),
|
192 |
+
"predictions": predictions
|
193 |
+
}
|
194 |
+
|
195 |
+
with open(results_file, "w") as f:
|
196 |
+
json.dump(detailed_results, f, indent=2)
|
197 |
+
|
198 |
+
progress(1.0, desc="β
Evaluation completed!")
|
199 |
+
|
200 |
+
return results_summary, df, results_file
|
201 |
+
|
202 |
+
def create_gradio_interface():
|
203 |
+
"""Create Gradio interface for CUAD evaluation"""
|
204 |
+
|
205 |
+
with gr.Blocks(title="CUAD Model Evaluator", theme=gr.themes.Soft()) as demo:
|
206 |
+
gr.HTML("""
|
207 |
+
<div style="text-align: center; padding: 20px;">
|
208 |
+
<h1>ποΈ CUAD Model Evaluation Dashboard</h1>
|
209 |
+
<p>Evaluate your CUAD (Contract Understanding Atticus Dataset) Question Answering model</p>
|
210 |
+
<p><strong>Model:</strong> AvocadoMuffin/roberta-cuad-qa-v2</p>
|
211 |
+
</div>
|
212 |
+
""")
|
213 |
+
|
214 |
+
with gr.Row():
|
215 |
+
with gr.Column(scale=1):
|
216 |
+
gr.HTML("<h3>βοΈ Evaluation Settings</h3>")
|
217 |
+
|
218 |
+
num_samples = gr.Slider(
|
219 |
+
minimum=10,
|
220 |
+
maximum=500,
|
221 |
+
value=100,
|
222 |
+
step=10,
|
223 |
+
label="Number of samples to evaluate",
|
224 |
+
info="Choose between 10-500 samples (more samples = more accurate but slower)"
|
225 |
+
)
|
226 |
+
|
227 |
+
evaluate_btn = gr.Button(
|
228 |
+
"π Start Evaluation",
|
229 |
+
variant="primary",
|
230 |
+
size="lg"
|
231 |
+
)
|
232 |
+
|
233 |
+
gr.HTML("""
|
234 |
+
<div style="margin-top: 20px; padding: 15px; background-color: #f0f0f0; border-radius: 8px;">
|
235 |
+
<h4>π What this evaluates:</h4>
|
236 |
+
<ul>
|
237 |
+
<li><strong>Exact Match</strong>: Percentage of perfect predictions</li>
|
238 |
+
<li><strong>F1 Score</strong>: Token-level overlap between prediction and ground truth</li>
|
239 |
+
<li><strong>Confidence</strong>: Model's confidence in its predictions</li>
|
240 |
+
</ul>
|
241 |
+
</div>
|
242 |
+
""")
|
243 |
+
|
244 |
+
with gr.Column(scale=2):
|
245 |
+
gr.HTML("<h3>π Results</h3>")
|
246 |
+
|
247 |
+
results_summary = gr.Markdown(
|
248 |
+
value="Click 'π Start Evaluation' to begin...",
|
249 |
+
label="Evaluation Summary"
|
250 |
+
)
|
251 |
+
|
252 |
+
gr.HTML("<hr>")
|
253 |
+
|
254 |
+
with gr.Row():
|
255 |
+
gr.HTML("<h3>π Detailed Results</h3>")
|
256 |
+
|
257 |
+
with gr.Row():
|
258 |
+
detailed_results = gr.Dataframe(
|
259 |
+
headers=["Sample_ID", "Question", "Predicted_Answer", "Ground_Truth", "Exact_Match", "F1_Score", "Confidence"],
|
260 |
+
label="Sample-by-Sample Results",
|
261 |
+
interactive=False,
|
262 |
+
wrap=True
|
263 |
+
)
|
264 |
+
|
265 |
+
with gr.Row():
|
266 |
+
download_file = gr.File(
|
267 |
+
label="π₯ Download Complete Results (JSON)",
|
268 |
+
visible=False
|
269 |
+
)
|
270 |
+
|
271 |
+
# Event handlers
|
272 |
+
evaluate_btn.click(
|
273 |
+
fn=run_evaluation,
|
274 |
+
inputs=[num_samples],
|
275 |
+
outputs=[results_summary, detailed_results, download_file],
|
276 |
+
show_progress=True
|
277 |
+
).then(
|
278 |
+
lambda: gr.update(visible=True),
|
279 |
+
outputs=[download_file]
|
280 |
+
)
|
281 |
+
|
282 |
+
# Footer
|
283 |
+
gr.HTML("""
|
284 |
+
<div style="text-align: center; margin-top: 30px; padding: 20px; color: #666;">
|
285 |
+
<p>π€ Powered by Hugging Face Transformers & Gradio</p>
|
286 |
+
<p>π CUAD Dataset by The Atticus Project</p>
|
287 |
+
</div>
|
288 |
+
""")
|
289 |
+
|
290 |
+
return demo
|
291 |
+
|
292 |
+
if __name__ == "__main__":
|
293 |
+
print("CUAD Model Evaluation with Gradio Interface")
|
294 |
+
print("=" * 50)
|
295 |
+
|
296 |
+
# Check if CUDA is available
|
297 |
+
if torch.cuda.is_available():
|
298 |
+
print(f"β CUDA available: {torch.cuda.get_device_name(0)}")
|
299 |
+
else:
|
300 |
+
print("! Running on CPU")
|
301 |
+
|
302 |
+
# Create and launch Gradio interface
|
303 |
+
demo = create_gradio_interface()
|
304 |
+
demo.launch(
|
305 |
+
server_name="0.0.0.0",
|
306 |
+
server_port=7860,
|
307 |
+
share=True,
|
308 |
+
debug=True
|
309 |
+
)
|