Spaces:
Sleeping
Sleeping
| import os | |
| import json | |
| import numpy as np | |
| import torch | |
| import torchaudio | |
| torchaudio.set_audio_backend("soundfile") # Use 'soundfile' backend | |
| from encodec import EncodecModel | |
| from encodec.utils import convert_audio | |
| from .hubert_manager import HuBERTManager | |
| from .pre_kmeans_hubert import CustomHubert | |
| from .customtokenizer import CustomTokenizer | |
| class VoiceParser(): | |
| def __init__(self, device='cpu'): | |
| model = ('quantifier_hubert_base_ls960_14.pth', 'tokenizer.pth') | |
| hubert_model = CustomHubert(HuBERTManager.make_sure_hubert_installed(), device=device) | |
| quant_model = CustomTokenizer.load_from_checkpoint(HuBERTManager.make_sure_tokenizer_installed(model=model[0], local_file=model[1]), device) | |
| encodec_model = EncodecModel.encodec_model_24khz() | |
| encodec_model.set_target_bandwidth(6.0) | |
| self.hubert_model = hubert_model | |
| self.quant_model = quant_model | |
| self.encodec_model = encodec_model.to(device) | |
| self.device = device | |
| print('Loaded VoiceParser models!') | |
| def extract_acoustic_embed(self, wav_path, npz_dir): | |
| wav, sr = torchaudio.load(wav_path) | |
| wav_hubert = wav.to(self.device) | |
| if wav_hubert.shape[0] == 2: # Stereo to mono if needed | |
| wav_hubert = wav_hubert.mean(0, keepdim=True) | |
| semantic_vectors = self.hubert_model.forward(wav_hubert, input_sample_hz=sr) | |
| semantic_tokens = self.quant_model.get_token(semantic_vectors) | |
| wav = convert_audio(wav, sr, self.encodec_model.sample_rate, 1).unsqueeze(0) | |
| wav = wav.to(self.device) | |
| with torch.no_grad(): | |
| encoded_frames = self.encodec_model.encode(wav) | |
| codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() | |
| codes = codes.cpu() | |
| semantic_tokens = semantic_tokens.cpu() | |
| wav_name = os.path.split(wav_path)[1] | |
| npz_name = wav_name[:-4] + '.npz' | |
| npz_path = os.path.join(npz_dir, npz_name) | |
| np.savez( | |
| npz_path, | |
| semantic_prompt=semantic_tokens, | |
| fine_prompt=codes, | |
| coarse_prompt=codes[:2, :] | |
| ) | |
| return npz_path | |
| def read_json_file(self, json_path): | |
| with open(json_path, 'r') as file: | |
| data = json.load(file) | |
| return data | |
| def parse_voice_json(self, voice_json, output_dir): | |
| """ | |
| Parse a voice json file, generate the corresponding output json and npz files | |
| Params: | |
| voice_json: path of a json file or List of json nodes | |
| output_dir: output dir for new json and npz files | |
| """ | |
| if isinstance(voice_json, list): | |
| voice_json = voice_json | |
| else: | |
| # If voice_json is a file path (str), read the JSON file | |
| voice_json = self.read_json_file(voice_json) | |
| for item in voice_json: | |
| wav_path = item['wav'] | |
| npz_path = self.extract_acoustic_embed(wav_path=wav_path, npz_dir=output_dir) | |
| item['npz'] = npz_path | |
| del item['wav'] | |
| output_json = os.path.join(output_dir, 'metadata.json') | |
| with open(output_json, 'w') as file: | |
| json.dump(voice_json, file, indent=4) | |