Spaces:
Sleeping
Sleeping
File size: 4,064 Bytes
ba9f995 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
"""Conversational QA Chain"""
from __future__ import annotations
import os
import re
import time
import logging
from langchain.chat_models import ChatOpenAI, ChatAnthropic
from langchain.memory import ConversationTokenBufferMemory
from convo_qa_chain import ConvoRetrievalChain
from toolkit.together_api_llm import TogetherLLM
from toolkit.retrivers import MyRetriever
from toolkit.local_llm import load_local_llm
from toolkit.utils import (
Config,
choose_embeddings,
load_embedding,
load_pickle,
check_device,
)
# Load the config file
configs = Config("configparser.ini")
logger = logging.getLogger(__name__)
os.environ["OPENAI_API_KEY"] = configs.openai_api_key
os.environ["ANTHROPIC_API_KEY"] = configs.anthropic_api_key
embedding = choose_embeddings(configs.embedding_name)
db_store_path = configs.db_dir
# get models
def get_llm(llm_name: str, temperature: float, max_tokens: int):
"""Get the LLM model from the model name."""
if not os.path.exists(configs.local_model_dir):
os.makedirs(configs.local_model_dir)
splits = llm_name.split("|") # [provider, model_name, model_file]
if "openai" in splits[0].lower():
llm_model = ChatOpenAI(
model=splits[1],
temperature=temperature,
max_tokens=max_tokens,
)
elif "anthropic" in splits[0].lower():
llm_model = ChatAnthropic(
model=splits[1],
temperature=temperature,
max_tokens_to_sample=max_tokens,
)
elif "together" in splits[0].lower():
llm_model = TogetherLLM(
model=splits[1],
temperature=temperature,
max_tokens=max_tokens,
)
elif "huggingface" in splits[0].lower():
llm_model = load_local_llm(
model_id=splits[1],
model_basename=splits[-1],
temperature=temperature,
max_tokens=max_tokens,
device_type=check_device(),
)
else:
raise ValueError("Invalid Model Name")
return llm_model
llm = get_llm(configs.model_name, configs.temperature, configs.max_llm_generation)
# load retrieval database
db_embedding_chunks_small = load_embedding(
store_name=configs.embedding_name,
embedding=embedding,
suffix="chunks_small",
path=db_store_path,
)
db_embedding_chunks_medium = load_embedding(
store_name=configs.embedding_name,
embedding=embedding,
suffix="chunks_medium",
path=db_store_path,
)
db_docs_chunks_small = load_pickle(
prefix="docs_pickle", suffix="chunks_small", path=db_store_path
)
db_docs_chunks_medium = load_pickle(
prefix="docs_pickle", suffix="chunks_medium", path=db_store_path
)
file_names = load_pickle(prefix="file", suffix="names", path=db_store_path)
# Initialize the retriever
my_retriever = MyRetriever(
llm=llm,
embedding_chunks_small=db_embedding_chunks_small,
embedding_chunks_medium=db_embedding_chunks_medium,
docs_chunks_small=db_docs_chunks_small,
docs_chunks_medium=db_docs_chunks_medium,
first_retrieval_k=configs.first_retrieval_k,
second_retrieval_k=configs.second_retrieval_k,
num_windows=configs.num_windows,
retriever_weights=configs.retriever_weights,
)
# Initialize the memory
memory = ConversationTokenBufferMemory(
llm=llm,
memory_key="chat_history",
input_key="question",
output_key="answer",
return_messages=True,
max_token_limit=configs.max_chat_history,
)
# Initialize the QA chain
qa = ConvoRetrievalChain.from_llm(
llm,
my_retriever,
file_names=file_names,
memory=memory,
return_source_documents=False,
return_generated_question=False,
)
if __name__ == "__main__":
while True:
user_input = input("Human: ")
start_time = time.time()
user_input_ = re.sub(r"^Human: ", "", user_input)
print("*" * 6)
resp = qa({"question": user_input_})
print()
print(f"AI:{resp['answer']}")
print(f"Time used: {time.time() - start_time}")
print("-" * 60)
|