Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import xgboost as xgb
|
4 |
+
import shap
|
5 |
+
import gradio as gr
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import matplotlib
|
8 |
+
|
9 |
+
matplotlib.use("Agg") # 防止服务器无图形界面时报错
|
10 |
+
|
11 |
+
# 指定输入特征顺序
|
12 |
+
feature_names = ["CT value(HU)", "Tumor size(cm)", "ctDNA", "CEA", "Location", "CYFRA21-1", "CA125", "LDH"]
|
13 |
+
|
14 |
+
# 加载模型(确保是用 sklearn API 训练并保存的)
|
15 |
+
model = xgb.XGBClassifier()
|
16 |
+
model.load_model("./xgb_model.json")
|
17 |
+
model.get_booster().feature_names = feature_names
|
18 |
+
|
19 |
+
# 初始化 SHAP 解释器
|
20 |
+
explainer = shap.Explainer(model)
|
21 |
+
|
22 |
+
|
23 |
+
# 预测函数
|
24 |
+
def predict_probability(CT_value, Tumor_size, ctDNA, CEA, Location, CYFRA21_1, CA125, LDH):
|
25 |
+
input_data = pd.DataFrame(
|
26 |
+
[[CT_value, Tumor_size, ctDNA, CEA, Location, CYFRA21_1, CA125, LDH]], columns=feature_names
|
27 |
+
)
|
28 |
+
|
29 |
+
# 将 Location 和 ctDNA 转换为数值型
|
30 |
+
input_data["Location"] = input_data["Location"].map({"Central": 1, "Peripheral": 0})
|
31 |
+
input_data["ctDNA"] = input_data["ctDNA"].map({"Positive": 1, "Negative": 0})
|
32 |
+
# 预测
|
33 |
+
try:
|
34 |
+
prob = model.predict_proba(input_data)[0][1]
|
35 |
+
except Exception as e:
|
36 |
+
return f"预测出错: {e}", None
|
37 |
+
|
38 |
+
# 计算 SHAP 值
|
39 |
+
try:
|
40 |
+
shap_values = explainer(input_data)
|
41 |
+
|
42 |
+
# 绘图
|
43 |
+
shap.plots.waterfall(shap_values[0], show=False)
|
44 |
+
plt.title("SHAP Waterfall Plot")
|
45 |
+
plt.savefig("shap_plot.png", bbox_inches="tight", dpi=300)
|
46 |
+
plt.close()
|
47 |
+
except Exception as e:
|
48 |
+
return f"SHAP 图生成失败: {e}", None
|
49 |
+
|
50 |
+
return f"阳性概率: {prob:.2%}", "shap_plot.png"
|
51 |
+
|
52 |
+
|
53 |
+
demo = gr.Interface(
|
54 |
+
fn=predict_probability,
|
55 |
+
inputs=[
|
56 |
+
gr.Number(label="CT value(HU)"),
|
57 |
+
gr.Number(label="Tumor size(cm)"),
|
58 |
+
gr.Dropdown(choices=["Positive", "Negative"], label="ctDNA"),
|
59 |
+
gr.Number(label="CEA (ng/mL) Normal range: 0-5"),
|
60 |
+
gr.Dropdown(choices=["Central", "Peripheral"], label="Location"), # 修改为 Dropdown 类型
|
61 |
+
gr.Number(label="CYFRA21-1 (ng/mL) Normal range: 0-5"),
|
62 |
+
gr.Number(label="CA125 (U/mL) Normal range: 0-35"),
|
63 |
+
gr.Number(label="LDH (U/L) Normal range: 120-250"),
|
64 |
+
],
|
65 |
+
outputs=[
|
66 |
+
gr.Textbox(label="预测结果"),
|
67 |
+
gr.Image(type="filepath", label="SHAP Waterfall Plot"),
|
68 |
+
],
|
69 |
+
title="淋巴结转移预测",
|
70 |
+
description="输入变量,获取预测阳性概率及SHAP解释图",
|
71 |
+
)
|
72 |
+
|
73 |
+
demo.launch(share=True)
|