Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,27 +2,33 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import spaces
|
4 |
import torch
|
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
|
|
|
7 |
MAX_MAX_NEW_TOKENS = 2048
|
8 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
9 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
DESCRIPTION = """\
|
12 |
# L-MChat
|
13 |
This Space demonstrates [L-MChat](https://huggingface.co/collections/Artples/l-mchat-663265a8351231c428318a8f) by L-AI.
|
14 |
"""
|
15 |
|
|
|
16 |
if not torch.cuda.is_available():
|
17 |
DESCRIPTION += "\n<p>Running on CPU! This demo does not work on CPU.</p>"
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
}
|
23 |
-
|
24 |
-
models = {name: AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") for name, model_id in model_details.items()}
|
25 |
-
tokenizers = {name: AutoTokenizer.from_pretrained(model_id) for name, model_id in model_details.items()}
|
26 |
|
27 |
@spaces.GPU(enable_queue=True, duration=90)
|
28 |
def generate(
|
@@ -39,35 +45,52 @@ def generate(
|
|
39 |
model = models[model_choice]
|
40 |
tokenizer = tokenizers[model_choice]
|
41 |
|
42 |
-
conversation = [
|
43 |
-
|
|
|
|
|
|
|
44 |
conversation.append({"role": "user", "content": message})
|
45 |
|
46 |
input_ids = tokenizer(conversation, return_tensors="pt", truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).input_ids
|
47 |
input_ids = input_ids.to(model.device)
|
48 |
|
49 |
-
output_ids = model.generate(
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
fn=generate,
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
],
|
|
|
|
|
|
|
|
|
|
|
66 |
)
|
67 |
|
|
|
68 |
with gr.Blocks(css="style.css") as demo:
|
69 |
gr.Markdown(DESCRIPTION)
|
70 |
chat_interface.render()
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
-
demo.launch()
|
|
|
2 |
import gradio as gr
|
3 |
import spaces
|
4 |
import torch
|
5 |
+
from threading import Thread
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
|
8 |
+
# Constants for model behavior
|
9 |
MAX_MAX_NEW_TOKENS = 2048
|
10 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
11 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
12 |
|
13 |
+
# Models selection
|
14 |
+
MODELS = {
|
15 |
+
"Fast-Model": "Artples/L-MChat-Small",
|
16 |
+
"Quality-Model": "Artples/L-MChat-7b"
|
17 |
+
}
|
18 |
+
|
19 |
+
# Description for the application
|
20 |
DESCRIPTION = """\
|
21 |
# L-MChat
|
22 |
This Space demonstrates [L-MChat](https://huggingface.co/collections/Artples/l-mchat-663265a8351231c428318a8f) by L-AI.
|
23 |
"""
|
24 |
|
25 |
+
# Check for GPU availability
|
26 |
if not torch.cuda.is_available():
|
27 |
DESCRIPTION += "\n<p>Running on CPU! This demo does not work on CPU.</p>"
|
28 |
|
29 |
+
# Load models and tokenizers
|
30 |
+
models = {name: AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") for name, model_id in MODELS.items()}
|
31 |
+
tokenizers = {name: AutoTokenizer.from_pretrained(model_id) for name, model_id in MODELS.items()}
|
|
|
|
|
|
|
|
|
32 |
|
33 |
@spaces.GPU(enable_queue=True, duration=90)
|
34 |
def generate(
|
|
|
45 |
model = models[model_choice]
|
46 |
tokenizer = tokenizers[model_choice]
|
47 |
|
48 |
+
conversation = []
|
49 |
+
if system_prompt:
|
50 |
+
conversation.append({"role": "system", "content": system_prompt})
|
51 |
+
for user, assistant in chat_history:
|
52 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
53 |
conversation.append({"role": "user", "content": message})
|
54 |
|
55 |
input_ids = tokenizer(conversation, return_tensors="pt", truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).input_ids
|
56 |
input_ids = input_ids.to(model.device)
|
57 |
|
58 |
+
output_ids = model.generate(
|
59 |
+
input_ids,
|
60 |
+
max_length=input_ids.shape[1] + max_new_tokens,
|
61 |
+
temperature=temperature,
|
62 |
+
top_p=top_p,
|
63 |
+
top_k=top_k,
|
64 |
+
repetition_penalty=repetition_penalty,
|
65 |
+
num_return_sequences=1,
|
66 |
+
)
|
67 |
|
68 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
69 |
|
70 |
+
# Gradio Interface
|
71 |
+
chat_interface = gr.Interface(
|
72 |
fn=generate,
|
73 |
+
inputs=[
|
74 |
+
gr.Dropdown(label="Choose Model", choices=list(MODELS.keys()), default="Quality-Model"),
|
75 |
+
gr.ChatBox(),
|
76 |
+
gr.Textbox(label="System prompt", lines=6),
|
77 |
+
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
78 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
79 |
+
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
80 |
+
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
81 |
+
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
82 |
],
|
83 |
+
outputs="text",
|
84 |
+
theme='ehristoforu/RE_Theme',
|
85 |
+
examples=[
|
86 |
+
["Quality-Model", "Hello there! How are you doing?", [], "Let's start the conversation.", 1024, 0.6, 0.9, 50, 1.2]
|
87 |
+
]
|
88 |
)
|
89 |
|
90 |
+
# Main execution block
|
91 |
with gr.Blocks(css="style.css") as demo:
|
92 |
gr.Markdown(DESCRIPTION)
|
93 |
chat_interface.render()
|
94 |
|
95 |
if __name__ == "__main__":
|
96 |
+
demo.queue(max_size=20).launch()
|