Update app.py
Browse files
app.py
CHANGED
|
@@ -3,236 +3,318 @@ import google.generativeai as genai
|
|
| 3 |
import requests
|
| 4 |
import subprocess
|
| 5 |
import os
|
| 6 |
-
import pylint
|
| 7 |
import pandas as pd
|
|
|
|
| 8 |
from sklearn.model_selection import train_test_split
|
| 9 |
from sklearn.ensemble import RandomForestClassifier
|
| 10 |
-
import
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
-
import
|
| 14 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Configure the Gemini API
|
| 17 |
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
|
| 18 |
|
| 19 |
# Create the model with optimized parameters and enhanced system instructions
|
| 20 |
generation_config = {
|
| 21 |
-
"temperature": 0.
|
| 22 |
-
"top_p": 0.
|
| 23 |
-
"top_k":
|
| 24 |
-
"max_output_tokens":
|
| 25 |
}
|
| 26 |
|
| 27 |
model = genai.GenerativeModel(
|
| 28 |
model_name="gemini-1.5-pro",
|
| 29 |
generation_config=generation_config,
|
| 30 |
system_instruction="""
|
| 31 |
-
You are Ath,
|
| 32 |
-
Your responses should contain optimized, secure, and high-quality code only, without explanations. You are designed to provide accurate, efficient, and cutting-edge code solutions.
|
| 33 |
"""
|
| 34 |
)
|
| 35 |
chat_session = model.start_chat(history=[])
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
def generate_response(user_input):
|
| 38 |
try:
|
| 39 |
response = chat_session.send_message(user_input)
|
| 40 |
return response.text
|
| 41 |
except Exception as e:
|
| 42 |
-
return f"Error: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
def optimize_code(code):
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
os.remove("temp_code.py")
|
| 51 |
-
return code
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
file.write(code)
|
| 82 |
-
repo.index.add(["generated_code.py"])
|
| 83 |
-
repo.index.commit("Added generated code")
|
| 84 |
-
|
| 85 |
-
def process_user_input(user_input):
|
| 86 |
-
# Placeholder for advanced natural language processing
|
| 87 |
-
nlp = English()
|
| 88 |
-
doc = nlp(user_input)
|
| 89 |
-
return doc
|
| 90 |
-
|
| 91 |
-
def interact_with_cloud_services(service_name, action, params):
|
| 92 |
-
# Placeholder for interacting with cloud services
|
| 93 |
-
client = boto3.client(service_name)
|
| 94 |
-
response = getattr(client, action)(**params)
|
| 95 |
-
return response
|
| 96 |
-
|
| 97 |
-
def run_tests():
|
| 98 |
-
# Placeholder for automated testing
|
| 99 |
-
test_suite = unittest.TestLoader().discover('tests')
|
| 100 |
-
test_runner = unittest.TextTestRunner()
|
| 101 |
-
test_result = test_runner.run(test_suite)
|
| 102 |
-
return test_result
|
| 103 |
|
| 104 |
-
#
|
| 105 |
-
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
background: #ffffff;
|
| 123 |
-
border-radius: 16px;
|
| 124 |
-
padding: 2rem;
|
| 125 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
|
| 126 |
-
}
|
| 127 |
-
h1 {
|
| 128 |
-
font-size: 2.5rem;
|
| 129 |
-
font-weight: 700;
|
| 130 |
-
color: #2d3748;
|
| 131 |
-
text-align: center;
|
| 132 |
-
margin-bottom: 1rem;
|
| 133 |
-
}
|
| 134 |
-
.subtitle {
|
| 135 |
-
font-size: 1.1rem;
|
| 136 |
-
text-align: center;
|
| 137 |
-
color: #4a5568;
|
| 138 |
-
margin-bottom: 2rem;
|
| 139 |
-
}
|
| 140 |
-
.stTextArea textarea {
|
| 141 |
-
border: 2px solid #e2e8f0;
|
| 142 |
-
border-radius: 8px;
|
| 143 |
-
font-size: 1rem;
|
| 144 |
-
padding: 0.75rem;
|
| 145 |
-
transition: all 0.3s ease;
|
| 146 |
-
}
|
| 147 |
-
.stTextArea textarea:focus {
|
| 148 |
-
border-color: #4299e1;
|
| 149 |
-
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
|
| 150 |
-
}
|
| 151 |
-
.stButton button {
|
| 152 |
-
background-color: #4299e1;
|
| 153 |
-
color: white;
|
| 154 |
-
border: none;
|
| 155 |
-
border-radius: 8px;
|
| 156 |
-
font-size: 1.1rem;
|
| 157 |
-
font-weight: 600;
|
| 158 |
-
padding: 0.75rem 2rem;
|
| 159 |
-
transition: all 0.3s ease;
|
| 160 |
-
width: 100%;
|
| 161 |
-
}
|
| 162 |
-
.stButton button:hover {
|
| 163 |
-
background-color: #3182ce;
|
| 164 |
-
}
|
| 165 |
-
.output-container {
|
| 166 |
-
background: #f7fafc;
|
| 167 |
-
border-radius: 8px;
|
| 168 |
-
padding: 1rem;
|
| 169 |
-
margin-top: 2rem;
|
| 170 |
-
}
|
| 171 |
-
.code-block {
|
| 172 |
-
background-color: #2d3748;
|
| 173 |
-
color: #e2e8f0;
|
| 174 |
-
font-family: 'Fira Code', monospace;
|
| 175 |
-
font-size: 0.9rem;
|
| 176 |
-
border-radius: 8px;
|
| 177 |
-
padding: 1rem;
|
| 178 |
-
margin-top: 1rem;
|
| 179 |
-
overflow-x: auto;
|
| 180 |
-
}
|
| 181 |
-
.stAlert {
|
| 182 |
-
background-color: #ebf8ff;
|
| 183 |
-
color: #2b6cb0;
|
| 184 |
-
border-radius: 8px;
|
| 185 |
-
border: none;
|
| 186 |
-
padding: 0.75rem 1rem;
|
| 187 |
-
}
|
| 188 |
-
.stSpinner {
|
| 189 |
-
color: #4299e1;
|
| 190 |
}
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
st.markdown('<div class="main-container">', unsafe_allow_html=True)
|
| 195 |
-
st.title("
|
| 196 |
-
st.markdown('<p class="subtitle">Powered by
|
| 197 |
|
| 198 |
-
prompt = st.text_area("What code can I
|
| 199 |
|
| 200 |
-
if st.button("Generate Code"):
|
| 201 |
if prompt.strip() == "":
|
| 202 |
st.error("Please enter a valid prompt.")
|
| 203 |
else:
|
| 204 |
-
with st.spinner("Generating code..."):
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
completed_text
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
else:
|
| 211 |
-
|
| 212 |
-
|
|
|
|
| 213 |
|
| 214 |
st.markdown('<div class="output-container">', unsafe_allow_html=True)
|
| 215 |
st.markdown('<div class="code-block">', unsafe_allow_html=True)
|
| 216 |
st.code(optimized_code)
|
| 217 |
st.markdown('</div>', unsafe_allow_html=True)
|
| 218 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
else:
|
| 229 |
-
st.
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
st.markdown("""
|
| 234 |
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
|
| 235 |
-
|
| 236 |
</div>
|
| 237 |
""", unsafe_allow_html=True)
|
| 238 |
|
|
|
|
| 3 |
import requests
|
| 4 |
import subprocess
|
| 5 |
import os
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
+
import numpy as np
|
| 8 |
from sklearn.model_selection import train_test_split
|
| 9 |
from sklearn.ensemble import RandomForestClassifier
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.optim as optim
|
| 13 |
+
from transformers import AutoTokenizer, AutoModel, pipeline
|
| 14 |
+
import ast
|
| 15 |
+
import networkx as nx
|
| 16 |
+
import matplotlib.pyplot as plt
|
| 17 |
+
import re
|
| 18 |
+
import javalang
|
| 19 |
+
import clang.cindex
|
| 20 |
+
import radon.metrics as radon_metrics
|
| 21 |
+
import radon.complexity as radon_complexity
|
| 22 |
+
import black
|
| 23 |
+
import isort
|
| 24 |
+
import autopep8
|
| 25 |
|
| 26 |
# Configure the Gemini API
|
| 27 |
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
|
| 28 |
|
| 29 |
# Create the model with optimized parameters and enhanced system instructions
|
| 30 |
generation_config = {
|
| 31 |
+
"temperature": 0.7,
|
| 32 |
+
"top_p": 0.9,
|
| 33 |
+
"top_k": 40,
|
| 34 |
+
"max_output_tokens": 32768,
|
| 35 |
}
|
| 36 |
|
| 37 |
model = genai.GenerativeModel(
|
| 38 |
model_name="gemini-1.5-pro",
|
| 39 |
generation_config=generation_config,
|
| 40 |
system_instruction="""
|
| 41 |
+
You are Ath, an extremely advanced code assistant with deep expertise in AI, machine learning, software engineering, and multiple programming languages. You provide cutting-edge, optimized, and secure code solutions across various domains. Use your vast knowledge to generate high-quality code, perform advanced analyses, and offer insightful optimizations. Adapt your language and explanations based on the user's expertise level.
|
|
|
|
| 42 |
"""
|
| 43 |
)
|
| 44 |
chat_session = model.start_chat(history=[])
|
| 45 |
|
| 46 |
+
# Load pre-trained models for code understanding and generation
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
|
| 48 |
+
codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")
|
| 49 |
+
code_generation_model = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")
|
| 50 |
+
|
| 51 |
+
class AdvancedCodeImprovement(nn.Module):
|
| 52 |
+
def __init__(self, input_dim):
|
| 53 |
+
super(AdvancedCodeImprovement, self).__init__()
|
| 54 |
+
self.fc1 = nn.Linear(input_dim, 1024)
|
| 55 |
+
self.fc2 = nn.Linear(1024, 512)
|
| 56 |
+
self.fc3 = nn.Linear(512, 256)
|
| 57 |
+
self.fc4 = nn.Linear(256, 128)
|
| 58 |
+
self.fc5 = nn.Linear(128, 64)
|
| 59 |
+
self.fc6 = nn.Linear(64, 32)
|
| 60 |
+
self.fc7 = nn.Linear(32, 16)
|
| 61 |
+
self.fc8 = nn.Linear(16, 4) # Multiple classification: style, efficiency, security, maintainability
|
| 62 |
+
|
| 63 |
+
def forward(self, x):
|
| 64 |
+
x = torch.relu(self.fc1(x))
|
| 65 |
+
x = torch.relu(self.fc2(x))
|
| 66 |
+
x = torch.relu(self.fc3(x))
|
| 67 |
+
x = torch.relu(self.fc4(x))
|
| 68 |
+
x = torch.relu(self.fc5(x))
|
| 69 |
+
x = torch.relu(self.fc6(x))
|
| 70 |
+
x = torch.relu(self.fc7(x))
|
| 71 |
+
return torch.sigmoid(self.fc8(x))
|
| 72 |
+
|
| 73 |
+
code_improvement_model = AdvancedCodeImprovement(768) # 768 is BERT's output dimension
|
| 74 |
+
optimizer = optim.Adam(code_improvement_model.parameters())
|
| 75 |
+
criterion = nn.BCELoss()
|
| 76 |
+
|
| 77 |
def generate_response(user_input):
|
| 78 |
try:
|
| 79 |
response = chat_session.send_message(user_input)
|
| 80 |
return response.text
|
| 81 |
except Exception as e:
|
| 82 |
+
return f"Error in generating response: {str(e)}"
|
| 83 |
+
|
| 84 |
+
def detect_language(code):
|
| 85 |
+
# Simple language detection based on keywords and syntax
|
| 86 |
+
if re.search(r'\b(def|class|import)\b', code):
|
| 87 |
+
return 'python'
|
| 88 |
+
elif re.search(r'\b(function|var|let|const)\b', code):
|
| 89 |
+
return 'javascript'
|
| 90 |
+
elif re.search(r'\b(public|private|class)\b', code):
|
| 91 |
+
return 'java'
|
| 92 |
+
elif re.search(r'\b(#include|int main)\b', code):
|
| 93 |
+
return 'c++'
|
| 94 |
+
else:
|
| 95 |
+
return 'unknown'
|
| 96 |
+
|
| 97 |
+
def validate_and_fix_code(code, language):
|
| 98 |
+
if language == 'python':
|
| 99 |
+
try:
|
| 100 |
+
fixed_code = autopep8.fix_code(code)
|
| 101 |
+
fixed_code = isort.SortImports(file_contents=fixed_code).output
|
| 102 |
+
fixed_code = black.format_str(fixed_code, mode=black.FileMode())
|
| 103 |
+
return fixed_code
|
| 104 |
+
except Exception as e:
|
| 105 |
+
return code, f"Error in fixing Python code: {str(e)}"
|
| 106 |
+
elif language == 'javascript':
|
| 107 |
+
# Use a JS beautifier (placeholder)
|
| 108 |
+
return code
|
| 109 |
+
elif language == 'java':
|
| 110 |
+
# Use a Java formatter (placeholder)
|
| 111 |
+
return code
|
| 112 |
+
elif language == 'c++':
|
| 113 |
+
# Use a C++ formatter (placeholder)
|
| 114 |
+
return code
|
| 115 |
+
else:
|
| 116 |
+
return code
|
| 117 |
|
| 118 |
def optimize_code(code):
|
| 119 |
+
language = detect_language(code)
|
| 120 |
+
fixed_code, fix_error = validate_and_fix_code(code, language)
|
| 121 |
+
|
| 122 |
+
if fix_error:
|
| 123 |
+
return fixed_code, fix_error
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
if language == 'python':
|
| 126 |
+
try:
|
| 127 |
+
tree = ast.parse(fixed_code)
|
| 128 |
+
# Perform advanced Python-specific optimizations
|
| 129 |
+
optimizer = PythonCodeOptimizer()
|
| 130 |
+
optimized_tree = optimizer.visit(tree)
|
| 131 |
+
optimized_code = ast.unparse(optimized_tree)
|
| 132 |
+
except SyntaxError as e:
|
| 133 |
+
return fixed_code, f"SyntaxError: {str(e)}"
|
| 134 |
+
elif language == 'java':
|
| 135 |
+
try:
|
| 136 |
+
tree = javalang.parse.parse(fixed_code)
|
| 137 |
+
# Perform Java-specific optimizations
|
| 138 |
+
optimizer = JavaCodeOptimizer()
|
| 139 |
+
optimized_code = optimizer.optimize(tree)
|
| 140 |
+
except javalang.parser.JavaSyntaxError as e:
|
| 141 |
+
return fixed_code, f"JavaSyntaxError: {str(e)}"
|
| 142 |
+
elif language == 'c++':
|
| 143 |
+
try:
|
| 144 |
+
index = clang.cindex.Index.create()
|
| 145 |
+
tu = index.parse('temp.cpp', args=['-std=c++14'], unsaved_files=[('temp.cpp', fixed_code)])
|
| 146 |
+
# Perform C++-specific optimizations
|
| 147 |
+
optimizer = CppCodeOptimizer()
|
| 148 |
+
optimized_code = optimizer.optimize(tu)
|
| 149 |
+
except Exception as e:
|
| 150 |
+
return fixed_code, f"C++ Parsing Error: {str(e)}"
|
| 151 |
+
else:
|
| 152 |
+
optimized_code = fixed_code # For unsupported languages, return the fixed code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
# Run language-specific linter
|
| 155 |
+
lint_results = run_linter(optimized_code, language)
|
| 156 |
+
|
| 157 |
+
return optimized_code, lint_results
|
| 158 |
|
| 159 |
+
def run_linter(code, language):
|
| 160 |
+
if language == 'python':
|
| 161 |
+
with open("temp_code.py", "w") as file:
|
| 162 |
+
file.write(code)
|
| 163 |
+
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
|
| 164 |
+
os.remove("temp_code.py")
|
| 165 |
+
return result.stdout
|
| 166 |
+
elif language == 'javascript':
|
| 167 |
+
# Run ESLint (placeholder)
|
| 168 |
+
return "JavaScript linting not implemented"
|
| 169 |
+
elif language == 'java':
|
| 170 |
+
# Run CheckStyle (placeholder)
|
| 171 |
+
return "Java linting not implemented"
|
| 172 |
+
elif language == 'c++':
|
| 173 |
+
# Run cppcheck (placeholder)
|
| 174 |
+
return "C++ linting not implemented"
|
| 175 |
+
else:
|
| 176 |
+
return "Linting not available for the detected language"
|
| 177 |
+
|
| 178 |
+
def fetch_from_github(query):
|
| 179 |
+
headers = {"Authorization": f"token {st.secrets['GITHUB_TOKEN']}"}
|
| 180 |
+
response = requests.get(f"https://api.github.com/search/code?q={query}", headers=headers)
|
| 181 |
+
if response.status_code == 200:
|
| 182 |
+
return response.json()['items'][:5] # Return top 5 results
|
| 183 |
+
return []
|
| 184 |
+
|
| 185 |
+
def analyze_code_quality(code):
|
| 186 |
+
inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512, padding="max_length")
|
| 187 |
|
| 188 |
+
with torch.no_grad():
|
| 189 |
+
outputs = codebert_model(**inputs)
|
| 190 |
+
|
| 191 |
+
cls_embedding = outputs.last_hidden_state[:, 0, :]
|
| 192 |
+
predictions = code_improvement_model(cls_embedding)
|
| 193 |
+
|
| 194 |
+
quality_scores = {
|
| 195 |
+
"style": predictions[0][0].item(),
|
| 196 |
+
"efficiency": predictions[0][1].item(),
|
| 197 |
+
"security": predictions[0][2].item(),
|
| 198 |
+
"maintainability": predictions[0][3].item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
}
|
| 200 |
+
|
| 201 |
+
# Calculate additional metrics
|
| 202 |
+
language = detect_language(code)
|
| 203 |
+
if language == 'python':
|
| 204 |
+
complexity = radon_complexity.cc_visit(code)
|
| 205 |
+
maintainability = radon_metrics.mi_visit(code, True)
|
| 206 |
+
quality_scores["cyclomatic_complexity"] = complexity[0].complexity
|
| 207 |
+
quality_scores["maintainability_index"] = maintainability
|
| 208 |
+
|
| 209 |
+
return quality_scores
|
| 210 |
+
|
| 211 |
+
def visualize_code_structure(code):
|
| 212 |
+
try:
|
| 213 |
+
tree = ast.parse(code)
|
| 214 |
+
graph = nx.DiGraph()
|
| 215 |
+
|
| 216 |
+
def add_nodes_edges(node, parent=None):
|
| 217 |
+
node_id = id(node)
|
| 218 |
+
graph.add_node(node_id, label=f"{type(node).__name__}\n{ast.unparse(node)[:20]}")
|
| 219 |
+
if parent:
|
| 220 |
+
graph.add_edge(id(parent), node_id)
|
| 221 |
+
for child in ast.iter_child_nodes(node):
|
| 222 |
+
add_nodes_edges(child, node)
|
| 223 |
+
|
| 224 |
+
add_nodes_edges(tree)
|
| 225 |
+
|
| 226 |
+
plt.figure(figsize=(15, 10))
|
| 227 |
+
pos = nx.spring_layout(graph, k=0.9, iterations=50)
|
| 228 |
+
nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=2000, font_size=8, font_weight='bold', arrows=True)
|
| 229 |
+
labels = nx.get_node_attributes(graph, 'label')
|
| 230 |
+
nx.draw_networkx_labels(graph, pos, labels, font_size=6)
|
| 231 |
+
|
| 232 |
+
return plt
|
| 233 |
+
except SyntaxError:
|
| 234 |
+
return None
|
| 235 |
+
|
| 236 |
+
def suggest_improvements(code, quality_scores):
|
| 237 |
+
suggestions = []
|
| 238 |
+
if quality_scores["style"] < 0.7:
|
| 239 |
+
suggestions.append("Consider improving code style for better readability.")
|
| 240 |
+
if quality_scores["efficiency"] < 0.7:
|
| 241 |
+
suggestions.append("There might be room for optimizing the code's efficiency.")
|
| 242 |
+
if quality_scores["security"] < 0.8:
|
| 243 |
+
suggestions.append("Review the code for potential security vulnerabilities.")
|
| 244 |
+
if quality_scores["maintainability"] < 0.7:
|
| 245 |
+
suggestions.append("The code could be refactored to improve maintainability.")
|
| 246 |
+
if "cyclomatic_complexity" in quality_scores and quality_scores["cyclomatic_complexity"] > 10:
|
| 247 |
+
suggestions.append("Consider breaking down complex functions to reduce cyclomatic complexity.")
|
| 248 |
+
return suggestions
|
| 249 |
+
|
| 250 |
+
# Streamlit UI setup
|
| 251 |
+
st.set_page_config(page_title="Highly Advanced AI Code Assistant", page_icon="π", layout="wide")
|
| 252 |
+
|
| 253 |
+
# ... (keep the existing CSS styles) ...
|
| 254 |
|
| 255 |
st.markdown('<div class="main-container">', unsafe_allow_html=True)
|
| 256 |
+
st.title("π Highly Advanced AI Code Assistant")
|
| 257 |
+
st.markdown('<p class="subtitle">Powered by Advanced AI & Multi-Domain Expertise</p>', unsafe_allow_html=True)
|
| 258 |
|
| 259 |
+
prompt = st.text_area("What advanced code task can I assist you with today?", height=120)
|
| 260 |
|
| 261 |
+
if st.button("Generate Advanced Code"):
|
| 262 |
if prompt.strip() == "":
|
| 263 |
st.error("Please enter a valid prompt.")
|
| 264 |
else:
|
| 265 |
+
with st.spinner("Generating and analyzing code..."):
|
| 266 |
+
completed_text = generate_response(prompt)
|
| 267 |
+
if "Error in generating response" in completed_text:
|
| 268 |
+
st.error(completed_text)
|
| 269 |
+
else:
|
| 270 |
+
optimized_code, lint_results = optimize_code(completed_text)
|
| 271 |
+
|
| 272 |
+
if "Error" in lint_results:
|
| 273 |
+
st.warning(f"Issues detected in the generated code. Attempting to fix...")
|
| 274 |
+
st.code(optimized_code)
|
| 275 |
+
st.info("Please review the code above. It may contain errors or be incomplete.")
|
| 276 |
else:
|
| 277 |
+
quality_scores = analyze_code_quality(optimized_code)
|
| 278 |
+
overall_quality = sum(quality_scores.values()) / len(quality_scores)
|
| 279 |
+
st.success(f"Code generated and optimized successfully! Overall Quality Score: {overall_quality:.2f}")
|
| 280 |
|
| 281 |
st.markdown('<div class="output-container">', unsafe_allow_html=True)
|
| 282 |
st.markdown('<div class="code-block">', unsafe_allow_html=True)
|
| 283 |
st.code(optimized_code)
|
| 284 |
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
| 285 |
|
| 286 |
+
col1, col2 = st.columns(2)
|
| 287 |
+
with col1:
|
| 288 |
+
st.subheader("Code Quality Metrics")
|
| 289 |
+
for metric, score in quality_scores.items():
|
| 290 |
+
st.metric(metric.capitalize(), f"{score:.2f}")
|
| 291 |
+
|
| 292 |
+
with col2:
|
| 293 |
+
st.subheader("Improvement Suggestions")
|
| 294 |
+
suggestions = suggest_improvements(optimized_code, quality_scores)
|
| 295 |
+
for suggestion in suggestions:
|
| 296 |
+
st.info(suggestion)
|
| 297 |
|
| 298 |
+
visualization = visualize_code_structure(optimized_code)
|
| 299 |
+
if visualization:
|
| 300 |
+
with st.expander("View Advanced Code Structure Visualization"):
|
| 301 |
+
st.pyplot(visualization)
|
| 302 |
else:
|
| 303 |
+
st.warning("Unable to generate code structure visualization.")
|
| 304 |
+
|
| 305 |
+
with st.expander("View Detailed Lint Results"):
|
| 306 |
+
st.text(lint_results)
|
| 307 |
+
|
| 308 |
+
with st.expander("Explore Similar Code from GitHub"):
|
| 309 |
+
github_results = fetch_from_github(prompt)
|
| 310 |
+
for item in github_results:
|
| 311 |
+
st.markdown(f"[{item['name']}]({item['html_url']})")
|
| 312 |
+
|
| 313 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 314 |
|
| 315 |
st.markdown("""
|
| 316 |
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
|
| 317 |
+
Crafted with π by Your Highly Advanced AI Code Assistant
|
| 318 |
</div>
|
| 319 |
""", unsafe_allow_html=True)
|
| 320 |
|