Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,14 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from moviepy.editor import VideoFileClip
|
| 3 |
import whisper
|
| 4 |
-
from
|
| 5 |
from gtts import gTTS
|
| 6 |
import tempfile
|
| 7 |
import os
|
|
|
|
| 8 |
|
| 9 |
# Initialize Whisper model
|
| 10 |
-
|
| 11 |
-
whisper_model = whisper.load_model("base") # Ensure the model is installed from the correct Whisper library
|
| 12 |
-
except AttributeError:
|
| 13 |
-
st.error("Whisper model could not be loaded. Ensure that Whisper is installed from GitHub.")
|
| 14 |
|
| 15 |
# Language options
|
| 16 |
LANGUAGES = {
|
|
@@ -46,15 +44,22 @@ if video_file:
|
|
| 46 |
os.remove(temp_video_path)
|
| 47 |
st.stop()
|
| 48 |
|
| 49 |
-
# Transcribe audio using Whisper
|
| 50 |
try:
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# Translate text to the target language
|
| 56 |
-
translator = Translator(
|
| 57 |
-
translated_text = translator.translate(original_text)
|
| 58 |
st.write(f"Translated Text ({target_language}):", translated_text)
|
| 59 |
|
| 60 |
# Convert translated text to speech
|
|
@@ -72,3 +77,13 @@ if video_file:
|
|
| 72 |
os.remove(temp_video_path)
|
| 73 |
os.remove(audio_path)
|
| 74 |
os.remove(audio_output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from moviepy.editor import VideoFileClip
|
| 3 |
import whisper
|
| 4 |
+
from googletrans import Translator
|
| 5 |
from gtts import gTTS
|
| 6 |
import tempfile
|
| 7 |
import os
|
| 8 |
+
import numpy as np
|
| 9 |
|
| 10 |
# Initialize Whisper model
|
| 11 |
+
whisper_model = whisper.load_model("base")
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Language options
|
| 14 |
LANGUAGES = {
|
|
|
|
| 44 |
os.remove(temp_video_path)
|
| 45 |
st.stop()
|
| 46 |
|
| 47 |
+
# Transcribe audio using Whisper in chunks
|
| 48 |
try:
|
| 49 |
+
# Load the audio file with Whisper
|
| 50 |
+
audio = whisper.load_audio(audio_path)
|
| 51 |
+
audio_segments = split_audio(audio, segment_length=30) # Split into 30-second segments
|
| 52 |
+
|
| 53 |
+
original_text = ""
|
| 54 |
+
for segment in audio_segments:
|
| 55 |
+
result = whisper_model.transcribe(segment)
|
| 56 |
+
original_text += result["text"] + " " # Concatenate transcriptions
|
| 57 |
+
|
| 58 |
+
st.write("Original Transcription:", original_text.strip())
|
| 59 |
|
| 60 |
# Translate text to the target language
|
| 61 |
+
translator = Translator()
|
| 62 |
+
translated_text = translator.translate(original_text.strip(), dest=LANGUAGES[target_language]).text
|
| 63 |
st.write(f"Translated Text ({target_language}):", translated_text)
|
| 64 |
|
| 65 |
# Convert translated text to speech
|
|
|
|
| 77 |
os.remove(temp_video_path)
|
| 78 |
os.remove(audio_path)
|
| 79 |
os.remove(audio_output_path)
|
| 80 |
+
|
| 81 |
+
def split_audio(audio, segment_length=30):
|
| 82 |
+
"""Split audio into segments of specified length in seconds."""
|
| 83 |
+
total_length = audio.shape[1] # Total length in seconds
|
| 84 |
+
segments = []
|
| 85 |
+
for start in range(0, total_length, segment_length):
|
| 86 |
+
end = min(start + segment_length, total_length)
|
| 87 |
+
segment = audio[:, start:end] # Append the segment
|
| 88 |
+
segments.append(segment)
|
| 89 |
+
return segments
|