import gradio as gr from huggingface_hub import InferenceClient # Initialize the client with your model client = InferenceClient("Arnic/gemma2-2b-it-Pubmed20k-TPU") # Define response function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): system_message = ( "You are a good listener. You advise relaxation exercises, suggest avoiding negative thoughts, " "and guide through steps to manage stress. Let's discuss what's on your mind, " "or ask me for a quick relaxation exercise." ) # Format history and system message as prompt text chat_history = "" for user_msg, bot_reply in history: if user_msg: chat_history += f"User: {user_msg}\n" if bot_reply: chat_history += f"Assistant: {bot_reply}\n" prompt = f"{system_message}\n\n{chat_history}User: {message}\nAssistant:" # Generate response using the InferenceClient text generation method response = client.text_generation( prompt=prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p ) # Extract and yield the text response generated_text = response["generated_text"].replace(prompt, "").strip() yield generated_text # Set up Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()