Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Initialize the client with your model | |
client = InferenceClient("Arnic/gemma2-2b-it-Pubmed20k-TPU") | |
# Define response function | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
system_message = ( | |
"You are a good listener. You advise relaxation exercises, suggest avoiding negative thoughts, " | |
"and guide through steps to manage stress. Let's discuss what's on your mind, " | |
"or ask me for a quick relaxation exercise." | |
) | |
# Format history and system message as prompt text | |
chat_history = "" | |
for user_msg, bot_reply in history: | |
if user_msg: | |
chat_history += f"User: {user_msg}\n" | |
if bot_reply: | |
chat_history += f"Assistant: {bot_reply}\n" | |
prompt = f"{system_message}\n\n{chat_history}User: {message}\nAssistant:" | |
# Generate response using the InferenceClient text generation method | |
response = client.text_generation( | |
prompt=prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p | |
) | |
# Extract and yield the text response | |
generated_text = response["generated_text"].replace(prompt, "").strip() | |
yield generated_text | |
# Set up Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |