Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +77 -0
- apt.txt +1 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
from pypdf import PdfReader
|
4 |
+
import gradio as gr
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
import faiss
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Load embedding model
|
10 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
11 |
+
|
12 |
+
# Global state to persist embeddings and chunks
|
13 |
+
index = None
|
14 |
+
chunks = []
|
15 |
+
|
16 |
+
# Step 1: Extract text from uploaded PDFs
|
17 |
+
def extract_text_from_pdfs(files):
|
18 |
+
all_text = ""
|
19 |
+
for file in files:
|
20 |
+
reader = PdfReader(file.name)
|
21 |
+
for page in reader.pages:
|
22 |
+
text = page.extract_text()
|
23 |
+
if text:
|
24 |
+
all_text += text + "\n"
|
25 |
+
return all_text
|
26 |
+
|
27 |
+
# Step 2: Chunk text
|
28 |
+
def chunk_text(text, chunk_size=500, overlap=50):
|
29 |
+
words = text.split()
|
30 |
+
result = []
|
31 |
+
for i in range(0, len(words), chunk_size - overlap):
|
32 |
+
chunk = " ".join(words[i:i + chunk_size])
|
33 |
+
result.append(chunk)
|
34 |
+
return result
|
35 |
+
|
36 |
+
# Step 3: Embed and store chunks
|
37 |
+
def create_index(text_chunks):
|
38 |
+
global index, chunks
|
39 |
+
chunks = text_chunks
|
40 |
+
embeddings = model.encode(chunks)
|
41 |
+
index = faiss.IndexFlatL2(len(embeddings[0]))
|
42 |
+
index.add(np.array(embeddings))
|
43 |
+
|
44 |
+
# Step 4: Retrieve top relevant chunks
|
45 |
+
def get_top_chunks(query, k=3):
|
46 |
+
query_vec = model.encode([query])
|
47 |
+
D, I = index.search(np.array(query_vec), k)
|
48 |
+
return [chunks[i] for i in I[0]]
|
49 |
+
|
50 |
+
# Step 5: Fake LLM response (replace with real API call if needed)
|
51 |
+
def call_llm(context, question):
|
52 |
+
return f"Answer (simulated): Based on context:\n\n{context}\n\nQuestion: {question}"
|
53 |
+
|
54 |
+
# Step 6: Gradio main function
|
55 |
+
def rag_pipeline(files, question):
|
56 |
+
text = extract_text_from_pdfs(files)
|
57 |
+
text_chunks = chunk_text(text)
|
58 |
+
create_index(text_chunks)
|
59 |
+
top_chunks = get_top_chunks(question)
|
60 |
+
context = "\n".join(top_chunks)
|
61 |
+
answer = call_llm(context, question)
|
62 |
+
return answer
|
63 |
+
|
64 |
+
# Step 7: Gradio UI
|
65 |
+
demo = gr.Interface(
|
66 |
+
fn=rag_pipeline,
|
67 |
+
inputs=[
|
68 |
+
gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDFs"),
|
69 |
+
gr.Textbox(lines=2, label="Ask a question")
|
70 |
+
],
|
71 |
+
outputs="text",
|
72 |
+
title="RAG PDF Chatbot",
|
73 |
+
description="Upload PDFs and ask questions based on their content"
|
74 |
+
)
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
demo.launch()
|
apt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pypdf
|
3 |
+
sentence-transformers
|
4 |
+
faiss-cpu
|
5 |
+
numpy
|