File size: 10,941 Bytes
736730d
 
 
11b6c0d
 
 
 
6d18423
 
5ccc1f4
 
 
 
11b6c0d
b55512b
 
 
 
 
 
 
 
736730d
 
b55512b
736730d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55512b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736730d
6d18423
 
 
 
 
 
 
736730d
 
 
 
 
27522fd
736730d
 
 
 
 
 
 
 
 
6d18423
736730d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27522fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736730d
27522fd
 
 
736730d
 
 
 
 
 
 
 
 
27522fd
736730d
 
 
 
 
 
 
 
 
 
27522fd
736730d
 
 
 
 
27522fd
736730d
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# utils.py

import os

# Set CrewAI storage directory to something writable BEFORE any imports
os.environ["CREWAI_STORAGE_DIR"] = "/tmp/crewai"
os.environ["CREWAI_TELEMETRY_ENABLED"] = "false"
os.environ["CREWAI_DB_PATH"] = "/tmp/crewai/crewai.db"
os.environ["CREWAI_MEMORY_ENABLED"] = "false"
os.environ["CREWAI_TRACING_ENABLED"] = "false"
os.environ["CREWAI_AUTH_ENABLED"] = "false"
os.environ["CREWAI_CREDENTIALS_PATH"] = "/tmp/crewai/credentials"
os.environ["CREWAI_SECURE_STORAGE_PATH"] = "/tmp/crewai/secure"

# Set HuggingFace cache directories
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface_cache"

# Create cache directory if it doesn't exist
os.makedirs("/tmp/huggingface_cache", exist_ok=True)

from dotenv import load_dotenv
from langchain_qdrant import QdrantVectorStore
from langchain_community.embeddings import HuggingFaceEmbeddings
from crewai import Agent, Task, Crew, Process, LLM
import requests
from requests.exceptions import ConnectionError, Timeout, HTTPError
from functools import lru_cache

# Load environment variables from .env file
load_dotenv()

# Settings
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
QDRANT_URL = os.getenv("QDRANT_URL")
COLLECTION_NAME = "finance-chatbot"
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
ALPHA_VANTAGE_API_KEY = os.getenv("ALPHA_VANTAGE_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")

# Initialize embeddings with a lightweight approach that doesn't require downloads
try:
    # Try to use a very lightweight embedding model that's likely already cached
    embeddings = HuggingFaceEmbeddings(
        model_name='sentence-transformers/all-MiniLM-L6-v2',
        cache_folder="/tmp",
        model_kwargs={'device': 'cpu'},
        encode_kwargs={'normalize_embeddings': True}
    )
    print("✅ Successfully loaded HuggingFace embeddings")
except Exception as e:
    print(f"❌ HuggingFace embeddings failed: {e}")
    # Fallback to a simple embedding approach
    try:
        from langchain.embeddings import FakeEmbeddings
        embeddings = FakeEmbeddings(size=384)
        print("⚠️ Using FakeEmbeddings as fallback - RAG functionality will be limited")
    except Exception as e2:
        print(f"❌ All embedding strategies failed: {e2}")
        # Create a minimal embedding class
        class SimpleEmbeddings:
            def embed_documents(self, texts):
                # Return random embeddings of size 384
                import numpy as np
                return [np.random.rand(384).tolist() for _ in texts]
            
            def embed_query(self, text):
                import numpy as np
                return np.random.rand(384).tolist()
        
        embeddings = SimpleEmbeddings()
        print("⚠️ Using SimpleEmbeddings as final fallback - RAG functionality will be limited")

# Connect to the existing Qdrant collection
qdrant = QdrantVectorStore.from_existing_collection(
    embedding=embeddings,
    url=QDRANT_URL,
    api_key=QDRANT_API_KEY,
    collection_name=COLLECTION_NAME
)

# Initialize Mistral LLM
mistral_llm = LLM(model="mistral/mistral-large-latest", api_key=MISTRAL_API_KEY, temperature=0.7)

# Initialize Gemini LLM
gemini_llm = LLM(model="gemini/gemini-2.0-flash", api_key=GEMINI_API_KEY, temperature=0.7)

# Functions
@lru_cache(maxsize=100)
def search_qdrant(query, top_k=3):
    """Search Qdrant for relevant documents."""
    try:
        retriever = qdrant.as_retriever(search_type="similarity", search_kwargs={"k": top_k})
        results = retriever.invoke(query)
        return [{"text": doc.page_content, "source": doc.metadata.get("source", "Unknown")} for doc in results]
    except Exception:
        return []

def search_news(query, max_results=5):
    """Search for recent financial news using Serper API."""
    try:
        url = "https://google.serper.dev/search"
        headers = {
            "X-API-KEY": SERPER_API_KEY,
            "Content-Type": "application/json"
        }
        payload = {
            "q": f"{query} finance news",
            "num": max_results
        }
        response = requests.post(url, json=payload, headers=headers, timeout=10)
        response.raise_for_status()
        data = response.json()

        results = data.get("organic", [])
        if not results:
            return [{"title": "No recent news available", "url": "", "snippet": "Could not fetch news. Please try again later."}]

        formatted_results = [
            {
                "title": item.get("title", ""),
                "url": item.get("link", ""),
                "snippet": item.get("snippet", "")
            }
            for item in results[:max_results]
        ]
        return formatted_results

    except ConnectionError:
        return [{"title": "Connection Error", "url": "", "snippet": "Failed to connect to the news API. Please check your internet connection."}]
    except Timeout:
        return [{"title": "Timeout Error", "url": "", "snippet": "News API request timed out. Please try again later."}]
    except HTTPError as e:
        if response.status_code == 429:
            return [{"title": "Rate Limit Exceeded", "url": "", "snippet": "Too many requests to the news API. Please try again later."}]
        return [{"title": "HTTP Error", "url": "", "snippet": f"Failed to fetch news due to HTTP error: {e}"}]
    except Exception:
        return [{"title": "Error", "url": "", "snippet": "An unexpected error occurred while fetching news. Please try again later."}]

def get_stock_data(symbol):
    """Fetch stock data using Alpha Vantage API."""
    try:
        url = f"https://www.alphavantage.co/query?function=GLOBAL_QUOTE&symbol={symbol}&apikey={ALPHA_VANTAGE_API_KEY}"
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        data = response.json().get("Global Quote", {})
        if not data:
            return {"symbol": symbol, "error": "No data found for this symbol."}
        return {
            "symbol": symbol,
            "price": data.get("05. price", "N/A"),
            "change": data.get("09. change", "N/A"),
            "change_percent": data.get("10. change percent", "N/A")
        }
    except ConnectionError:
        return {"symbol": symbol, "error": "Failed to connect to the stock API. Please check your internet connection."}
    except Timeout:
        return {"symbol": symbol, "error": "Stock API request timed out. Please try again later."}
    except HTTPError as e:
        if response.status_code == 429:
            return {"symbol": symbol, "error": "Too many requests to the stock API. Please try again later."}
        return {"symbol": symbol, "error": f"Failed to fetch stock data due to HTTP error: {e}"}
    except Exception:
        return {"symbol": symbol, "error": "An unexpected error occurred while fetching stock data. Please try again later."}

@lru_cache(maxsize=100)
def determine_question_type(query):
    """Determine the type of user query using Mistral LLM via CrewAI's task mechanism."""
    classifier_agent = Agent(
        role="Query Classifier",
        goal="Classify user queries into appropriate categories, including detecting out-of-scope queries.",
        backstory="An expert in natural language understanding, capable of analyzing queries and categorizing them accurately.",
        llm=mistral_llm,
        verbose=True,
        allow_delegation=False
    )

    # Check if the query is finance-related
    finance_check_prompt = f"""
    Analyze the following user query and determine if it is related to finance:
    - Return 'Yes' if the query is related to financial terms, concepts, strategies, market news, or stock analysis (e.g., banking, stocks, revenue, P/E ratio).
    - Return 'No' if the query is unrelated to finance (e.g., cooking recipes, weather, or unrelated topics).

    Query: "{query}"

    Provide your response in this format:
    Is Finance Related: <Yes/No>
    """

    finance_check_task = Task(
        description=finance_check_prompt,
        agent=classifier_agent,
        expected_output="A classification in the format: Is Finance Related: <Yes/No>"
    )

    temp_crew = Crew(
        agents=[classifier_agent],
        tasks=[finance_check_task],
        process=Process.sequential,
        verbose=False
    )

    try:
        response = temp_crew.kickoff()
        response_text = response.raw if hasattr(response, 'raw') else str(response)
        lines = response_text.strip().split("\n")
        if len(lines) < 1 or "Is Finance Related:" not in lines[0]:
            raise ValueError("Invalid response format from LLM for finance check")
        is_finance_related = lines[0].replace("Is Finance Related: ", "").strip().lower() == "yes"
    except Exception as e:
        # Fallback to default behavior if classification fails
        is_finance_related = False

    if not is_finance_related:
        return "out_of_scope", "This query is out of scope for a finance assistant."

    #If finance-related, classify the query type
    classification_prompt = f"""
    Analyze the following user query and determine its category:
    - finance_knowledge: General questions about financial terms, concepts, or strategies (e.g., 'What is revenue?', 'Explain P/E ratio')
    - market_news: Questions about current market news, trends, or events (e.g., 'Latest news about cryptocurrency market')
    - stock_analysis: Questions about specific stock analysis (e.g., mentioning a stock ticker like AAPL, 'Analyze META stock performance')

    Query: "{query}"

    Provide your response in this format:
    Category: <category>
    Extra Data: <additional info, such as the stock ticker for stock_analysis, or the query itself>
    """

    classifier_task = Task(
        description=classification_prompt,
        agent=classifier_agent,
        expected_output="A classification of the query in the format: Category: <category>\nExtra Data: <additional info>"
    )

    temp_crew = Crew(
        agents=[classifier_agent],
        tasks=[classifier_task],
        process=Process.sequential,
        verbose=False
    )

    try:
        response = temp_crew.kickoff()
        response_text = response.raw if hasattr(response, 'raw') else str(response)
        lines = response_text.strip().split("\n")
        if len(lines) < 2:
            raise ValueError("Invalid response format from LLM for category classification")
        category_line = lines[0].replace("Category: ", "").strip()
        extra_data_line = lines[1].replace("Extra Data: ", "").strip()
        if category_line not in ["finance_knowledge", "market_news", "stock_analysis"]:
            raise ValueError(f"Invalid category: {category_line}")
        return category_line, extra_data_line
    except Exception:
        return "finance_knowledge", query