Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# First, install required packages
|
2 |
+
#!pip install gradio pandas numpy scikit-learn
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
from sklearn.preprocessing import StandardScaler
|
8 |
+
import json
|
9 |
+
from datetime import datetime, timedelta
|
10 |
+
|
11 |
+
class SimplePrecisionMedicineSystem:
|
12 |
+
def __init__(self):
|
13 |
+
self.scaler = StandardScaler()
|
14 |
+
|
15 |
+
def calculate_risk_score(self, genetic_score, lifestyle_score, age, symptom_severity):
|
16 |
+
"""Calculate overall risk score"""
|
17 |
+
try:
|
18 |
+
# Normalize age to 0-1 range (assuming max age of 100)
|
19 |
+
age_normalized = age / 100.0
|
20 |
+
|
21 |
+
# Weight factors (can be adjusted)
|
22 |
+
weights = {
|
23 |
+
'genetic': 0.4,
|
24 |
+
'lifestyle': 0.3,
|
25 |
+
'age': 0.2,
|
26 |
+
'symptoms': 0.1
|
27 |
+
}
|
28 |
+
|
29 |
+
# Calculate weighted risk score
|
30 |
+
risk_score = (
|
31 |
+
genetic_score * weights['genetic'] +
|
32 |
+
(1 - lifestyle_score) * weights['lifestyle'] + # Invert lifestyle score
|
33 |
+
age_normalized * weights['age'] +
|
34 |
+
(symptom_severity / 10) * weights['symptoms'] # Normalize to 0-1
|
35 |
+
)
|
36 |
+
|
37 |
+
return round(risk_score, 2)
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Error in risk calculation: {str(e)}")
|
40 |
+
return 0.5 # Return middle value if error occurs
|
41 |
+
|
42 |
+
def get_treatment_recommendation(self, risk_score, current_medication, symptom_severity):
|
43 |
+
"""Generate treatment recommendations based on risk score and symptoms"""
|
44 |
+
try:
|
45 |
+
base_recommendations = []
|
46 |
+
|
47 |
+
# Risk-based recommendations
|
48 |
+
if risk_score < 0.3:
|
49 |
+
base_recommendations.append("Low risk profile - Continue monitoring")
|
50 |
+
elif risk_score < 0.6:
|
51 |
+
base_recommendations.append("Moderate risk - Regular check-ups recommended")
|
52 |
+
else:
|
53 |
+
base_recommendations.append("High risk - Intensive monitoring required")
|
54 |
+
|
55 |
+
# Symptom-based recommendations
|
56 |
+
if symptom_severity <= 3:
|
57 |
+
base_recommendations.append("Mild symptoms - Maintain current treatment")
|
58 |
+
elif symptom_severity <= 7:
|
59 |
+
base_recommendations.append("Moderate symptoms - Consider treatment adjustment")
|
60 |
+
else:
|
61 |
+
base_recommendations.append("Severe symptoms - Immediate medical review required")
|
62 |
+
|
63 |
+
# Medication-based recommendations
|
64 |
+
if current_medication.lower().strip() in ['none', 'no', '']:
|
65 |
+
if risk_score > 0.5:
|
66 |
+
base_recommendations.append("Consider initiating preventive treatment")
|
67 |
+
else:
|
68 |
+
base_recommendations.append("Review current medications at next appointment")
|
69 |
+
|
70 |
+
return base_recommendations
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error in treatment recommendation: {str(e)}")
|
73 |
+
return ["Unable to generate recommendations due to error"]
|
74 |
+
|
75 |
+
def generate_report(self, patient_data):
|
76 |
+
"""Generate patient report"""
|
77 |
+
try:
|
78 |
+
# Calculate risk score
|
79 |
+
risk_score = self.calculate_risk_score(
|
80 |
+
patient_data['genetic_score'],
|
81 |
+
patient_data['lifestyle_score'],
|
82 |
+
patient_data['age'],
|
83 |
+
patient_data['symptom_severity']
|
84 |
+
)
|
85 |
+
|
86 |
+
# Get treatment recommendations
|
87 |
+
recommendations = self.get_treatment_recommendation(
|
88 |
+
risk_score,
|
89 |
+
patient_data['current_medication'],
|
90 |
+
patient_data['symptom_severity']
|
91 |
+
)
|
92 |
+
|
93 |
+
# Create report
|
94 |
+
report = {
|
95 |
+
"Patient Information": {
|
96 |
+
"Age": patient_data['age'],
|
97 |
+
"Gender": patient_data['gender'],
|
98 |
+
"Current Medications": patient_data['current_medication']
|
99 |
+
},
|
100 |
+
"Risk Assessment": {
|
101 |
+
"Overall Risk Score": risk_score,
|
102 |
+
"Risk Category": "High" if risk_score > 0.6 else "Moderate" if risk_score > 0.3 else "Low",
|
103 |
+
"Genetic Risk": patient_data['genetic_score'],
|
104 |
+
"Lifestyle Score": patient_data['lifestyle_score']
|
105 |
+
},
|
106 |
+
"Current Status": {
|
107 |
+
"Symptom Severity": f"{patient_data['symptom_severity']}/10",
|
108 |
+
},
|
109 |
+
"Recommendations": recommendations,
|
110 |
+
"Next Steps": {
|
111 |
+
"Follow-up": "Within 1 week" if risk_score > 0.6 else "Within 1 month" if risk_score > 0.3 else "Within 3 months",
|
112 |
+
"Monitoring": "Daily" if patient_data['symptom_severity'] > 7 else "Weekly" if patient_data['symptom_severity'] > 4 else "Monthly"
|
113 |
+
},
|
114 |
+
"Report Generated": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
115 |
+
}
|
116 |
+
|
117 |
+
return json.dumps(report, indent=2)
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Error in report generation: {str(e)}")
|
120 |
+
return json.dumps({"error": "Failed to generate report", "message": str(e)})
|
121 |
+
|
122 |
+
def create_gradio_interface():
|
123 |
+
"""Create Gradio interface"""
|
124 |
+
system = SimplePrecisionMedicineSystem()
|
125 |
+
|
126 |
+
def process_patient(age, gender, genetic_score, lifestyle_score, current_medication, symptom_severity):
|
127 |
+
try:
|
128 |
+
# Create patient data dictionary
|
129 |
+
patient_data = {
|
130 |
+
'age': age,
|
131 |
+
'gender': gender,
|
132 |
+
'genetic_score': genetic_score,
|
133 |
+
'lifestyle_score': lifestyle_score,
|
134 |
+
'current_medication': current_medication,
|
135 |
+
'symptom_severity': symptom_severity
|
136 |
+
}
|
137 |
+
|
138 |
+
# Generate report
|
139 |
+
return system.generate_report(patient_data)
|
140 |
+
|
141 |
+
except Exception as e:
|
142 |
+
return json.dumps({
|
143 |
+
"error": "An error occurred while processing the patient data",
|
144 |
+
"details": str(e)
|
145 |
+
}, indent=2)
|
146 |
+
|
147 |
+
# Create interface
|
148 |
+
iface = gr.Interface(
|
149 |
+
fn=process_patient,
|
150 |
+
inputs=[
|
151 |
+
gr.Number(label="Age", minimum=0, maximum=120),
|
152 |
+
gr.Dropdown(choices=["Male", "Female", "Other"], label="Gender"),
|
153 |
+
gr.Slider(minimum=0, maximum=1, step=0.1, label="Genetic Risk Score (0-1)"),
|
154 |
+
gr.Slider(minimum=0, maximum=1, step=0.1, label="Lifestyle Score (0-1)"),
|
155 |
+
gr.Textbox(label="Current Medications (comma-separated or 'None')"),
|
156 |
+
gr.Slider(minimum=0, maximum=10, step=1, label="Symptom Severity (0-10)")
|
157 |
+
],
|
158 |
+
outputs=gr.JSON(label="Medical Report"),
|
159 |
+
title="Precision Medicine System",
|
160 |
+
description="Enter patient information to generate personalized medical recommendations",
|
161 |
+
examples=[
|
162 |
+
[45, "Female", 0.6, 0.7, "Metformin 500mg, Lisinopril 10mg", 4],
|
163 |
+
[72, "Male", 0.8, 0.4, "Warfarin 5mg, Atorvastatin 40mg", 7],
|
164 |
+
[28, "Other", 0.2, 0.9, "None", 2]
|
165 |
+
]
|
166 |
+
)
|
167 |
+
return iface
|
168 |
+
|
169 |
+
# Launch the interface
|
170 |
+
if __name__ == "__main__":
|
171 |
+
interface = create_gradio_interface()
|
172 |
+
interface.launch()
|