File size: 11,266 Bytes
14ea8fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import gradio as gr
import PyPDF2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from deep_translator import GoogleTranslator # More stable than googletrans
import logging
from typing import Optional, Dict
import time
from pathlib import Path
import os
import pandas as pd
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Language mapping with detailed descriptions
LANGUAGE_MAPPING = {
"hi": {
"name": "Hindi - हिन्दी",
"description": "Official language of India, written in Devanagari script",
"deep_translator_code": "hi"
},
"ta": {
"name": "Tamil - தமிழ்",
"description": "Classical language of Tamil Nadu, written in Tamil script",
"deep_translator_code": "ta"
},
"te": {
"name": "Telugu - తెలుగు",
"description": "Official language of Andhra Pradesh and Telangana",
"deep_translator_code": "te"
},
"bn": {
"name": "Bengali - বাংলা",
"description": "Official language of West Bengal and Bangladesh",
"deep_translator_code": "bn"
},
"mr": {
"name": "Marathi - मराठी",
"description": "Official language of Maharashtra",
"deep_translator_code": "mr"
}
}
class FileQueryTranslator:
def __init__(self, max_retries=3, retry_delay=1):
self.max_retries = max_retries
self.retry_delay = retry_delay
self.setup_device()
self.setup_model()
logger.info(f"Initialization complete. Using device: {self.device}")
def setup_device(self):
"""Setup CUDA device with error handling"""
try:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if self.device.type == "cuda":
# Check CUDA memory
torch.cuda.empty_cache()
logger.info(f"Available CUDA memory: {torch.cuda.get_device_properties(0).total_memory}")
except Exception as e:
logger.warning(f"Error setting up CUDA device: {e}. Falling back to CPU.")
self.device = torch.device("cpu")
def setup_model(self):
"""Initialize the model with retry mechanism"""
for attempt in range(self.max_retries):
try:
model_name = "facebook/opt-125m" # Using smaller model for stability
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32
)
if self.device.type == "cuda":
self.model = self.model.to(self.device)
torch.cuda.empty_cache() # Clear CUDA cache
else:
self.model = self.model.to(self.device)
logger.info(f"Model loaded successfully on {self.device}")
break
except Exception as e:
logger.error(f"Attempt {attempt + 1} failed: {str(e)}")
if attempt < self.max_retries - 1:
time.sleep(self.retry_delay)
else:
raise Exception("Failed to load model after maximum retries")
def extract_text_from_pdf(self, pdf_file: str) -> str:
"""Extract text from PDF with robust error handling"""
try:
if not os.path.exists(pdf_file):
raise FileNotFoundError(f"PDF file not found: {pdf_file}")
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = []
for page_num in range(len(pdf_reader.pages)):
try:
page = pdf_reader.pages[page_num]
text.append(page.extract_text())
except Exception as e:
logger.error(f"Error extracting text from page {page_num}: {e}")
text.append(f"[Error extracting page {page_num}]")
return "\n".join(text)
except Exception as e:
logger.error(f"Error processing PDF: {str(e)}")
return f"Error processing PDF: {str(e)}"
def extract_text_from_csv(self, csv_file: str) -> str:
"""Extract text from CSV with robust error handling"""
try:
if not os.path.exists(csv_file):
raise FileNotFoundError(f"CSV file not found: {csv_file}")
df = pd.read_csv(csv_file)
text = df.to_string(index=False)
return text
except Exception as e:
logger.error(f"Error processing CSV: {str(e)}")
return f"Error processing CSV: {str(e)}"
def extract_text_from_xlsx(self, xlsx_file: str) -> str:
"""Extract text from XLSX with robust error handling"""
try:
if not os.path.exists(xlsx_file):
raise FileNotFoundError(f"XLSX file not found: {xlsx_file}")
df = pd.read_excel(xlsx_file)
text = df.to_string(index=False)
return text
except Exception as e:
logger.error(f"Error processing XLSX: {str(e)}")
return f"Error processing XLSX: {str(e)}"
def translate_text(self, text: str, target_lang: str) -> str:
"""Translate text using deep_translator with retry mechanism"""
for attempt in range(self.max_retries):
try:
translator = GoogleTranslator(source='auto', target=target_lang)
# Split text into chunks if it's too long (Google Translate limit)
max_chunk_size = 4500
chunks = [text[i:i + max_chunk_size] for i in range(0, len(text), max_chunk_size)]
translated_chunks = []
for chunk in chunks:
translated_chunk = translator.translate(chunk)
translated_chunks.append(translated_chunk)
time.sleep(0.5) # Rate limiting
return ' '.join(translated_chunks)
except Exception as e:
logger.error(f"Translation attempt {attempt + 1} failed: {str(e)}")
if attempt < self.max_retries - 1:
time.sleep(self.retry_delay)
else:
return f"Translation error: {str(e)}"
def process_query(self, file_path: str, file_type: str, query: str, language: str) -> str:
"""Process query with comprehensive error handling"""
try:
# Validate inputs
if not file_path or not os.path.exists(file_path):
return "Please provide a valid file."
if not query.strip():
return "Please provide a valid query."
if language not in LANGUAGE_MAPPING:
return "Please select a valid language."
# Extract text based on file type
if file_type == "pdf":
file_text = self.extract_text_from_pdf(file_path)
elif file_type == "csv":
file_text = self.extract_text_from_csv(file_path)
elif file_type == "xlsx":
file_text = self.extract_text_from_xlsx(file_path)
else:
return "Unsupported file type."
if file_text.startswith("Error"):
return file_text
# Generate response
prompt = f"Query: {query}\n\nContent: {file_text[:1000]}\n\nAnswer:" # Limit content length
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
with torch.no_grad():
output = self.model.generate(
input_ids,
max_new_tokens=200, # Use max_new_tokens instead of max_length
num_return_sequences=1,
temperature=0.7,
pad_token_id=self.tokenizer.eos_token_id
)
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
# Translate
target_lang = LANGUAGE_MAPPING[language]["deep_translator_code"]
translated_response = self.translate_text(response, target_lang)
return translated_response
except Exception as e:
logger.error(f"Error in process_query: {str(e)}")
return f"An error occurred: {str(e)}"
# Gradio interface
def create_interface():
file_processor = FileQueryTranslator()
with gr.Blocks() as demo:
gr.Markdown("### File Query and Translation System")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload File (PDF, CSV, XLSX)",
type="filepath"
)
file_type_input = gr.Radio(
label="Select File Type",
choices=["pdf", "csv", "xlsx"],
value="pdf"
)
query_input = gr.Textbox(
label="Enter your question about the file",
placeholder="What would you like to know about the document?"
)
language_input = gr.Dropdown(
label="Select Output Language",
choices=[f"{code} - {info['name']}" for code, info in LANGUAGE_MAPPING.items()],
value="hi - Hindi - हिन्दी"
)
language_description = gr.Textbox(
label="Language Information",
value=LANGUAGE_MAPPING['hi']['description'],
interactive=False
)
with gr.Row():
output_text = gr.Textbox(
label="Translated Answer",
placeholder="Translation will appear here...",
lines=5
)
def update_description(selected):
code = selected.split(" - ")[0]
return LANGUAGE_MAPPING[code]['description']
def process_and_translate(file_path, file_type, query, language):
try:
lang_code = language.split(" - ")[0]
return file_processor.process_query(file_path, file_type, query, lang_code)
except Exception as e:
return f"Error processing request: {str(e)}"
# Event handlers
language_input.change(
fn=update_description,
inputs=[language_input],
outputs=[language_description]
)
submit_button = gr.Button("Get Answer")
submit_button.click(
fn=process_and_translate,
inputs=[file_input, file_type_input, query_input, language_input],
outputs=output_text
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.queue() # Enable queueing
demo.launch(share=True) |