Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,37 +8,37 @@ import matplotlib.pyplot as plt
|
|
| 8 |
import seaborn as sns
|
| 9 |
|
| 10 |
# Define constants
|
| 11 |
-
MODEL_NAME = "
|
| 12 |
FIGURES_DIR = "./figures"
|
| 13 |
|
| 14 |
# Ensure the figures directory exists
|
| 15 |
os.makedirs(FIGURES_DIR, exist_ok=True)
|
| 16 |
|
| 17 |
# Initialize tokenizer and model
|
| 18 |
-
|
| 19 |
try:
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 21 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME
|
|
|
|
|
|
|
| 22 |
except Exception as e:
|
| 23 |
print(f"Error loading model: {e}")
|
| 24 |
exit(1)
|
| 25 |
|
| 26 |
-
# Define the base prompt
|
| 27 |
base_prompt = """You are an expert data analyst.
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
Your final answer should be a long string with at least 3 numbered and detailed parts.
|
| 36 |
|
| 37 |
-
|
| 38 |
-
{
|
| 39 |
|
| 40 |
-
|
| 41 |
-
DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
|
| 42 |
"""
|
| 43 |
|
| 44 |
example_notes = """This data is about the Titanic wreck in 1912.
|
|
@@ -48,13 +48,8 @@ pclass: A proxy for socio-economic status (SES)
|
|
| 48 |
2nd = Middle
|
| 49 |
3rd = Lower
|
| 50 |
age: Age is fractional if less than 1. If the age is estimated, it is in the form of xx.5
|
| 51 |
-
sibsp:
|
| 52 |
-
|
| 53 |
-
Spouse = husband, wife (mistresses and fiancés were ignored)
|
| 54 |
-
parch: The dataset defines family relations in this way...
|
| 55 |
-
Parent = mother, father
|
| 56 |
-
Child = daughter, son, stepdaughter, stepson
|
| 57 |
-
Some children traveled only with a nanny, therefore parch=0 for them."""
|
| 58 |
|
| 59 |
def get_images_in_directory(directory):
|
| 60 |
"""Retrieve all image file paths from the specified directory."""
|
|
@@ -66,25 +61,75 @@ def get_images_in_directory(directory):
|
|
| 66 |
image_files.append(os.path.join(root, file))
|
| 67 |
return image_files
|
| 68 |
|
| 69 |
-
def
|
| 70 |
-
"""Generate a
|
| 71 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 72 |
inputs = inputs.to('cpu') # Ensure the model runs on CPU
|
| 73 |
|
| 74 |
-
# Generate response
|
| 75 |
with torch.no_grad():
|
| 76 |
outputs = model.generate(
|
| 77 |
-
|
| 78 |
-
max_length=
|
| 79 |
do_sample=True,
|
| 80 |
top_p=0.95,
|
| 81 |
temperature=0.7,
|
| 82 |
-
eos_token_id=tokenizer.eos_token_id
|
|
|
|
| 83 |
)
|
| 84 |
|
| 85 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 86 |
return response
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
def interact_with_agent(file_input, additional_notes):
|
| 89 |
"""Process the uploaded file and interact with the language model to analyze data."""
|
| 90 |
# Clear and recreate the figures directory
|
|
@@ -92,36 +137,37 @@ def interact_with_agent(file_input, additional_notes):
|
|
| 92 |
shutil.rmtree(FIGURES_DIR)
|
| 93 |
os.makedirs(FIGURES_DIR, exist_ok=True)
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
data_file = pd.read_csv(file_input.name)
|
| 98 |
-
except Exception as e:
|
| 99 |
-
yield [("Error loading CSV file.",)]
|
| 100 |
return
|
| 101 |
|
| 102 |
-
#
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
| 107 |
|
| 108 |
-
# Construct the prompt
|
| 109 |
-
prompt = base_prompt.format(
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
-
#
|
| 115 |
-
messages = [
|
| 116 |
-
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
#
|
| 119 |
-
|
| 120 |
-
messages.append(("Assistant", response))
|
| 121 |
|
| 122 |
-
#
|
| 123 |
-
|
| 124 |
-
for image_path in image_paths:
|
| 125 |
messages.append(("Assistant", gr.Image.update(value=image_path)))
|
| 126 |
|
| 127 |
yield messages
|
|
@@ -129,40 +175,40 @@ def interact_with_agent(file_input, additional_notes):
|
|
| 129 |
# Define the Gradio interface
|
| 130 |
with gr.Blocks(
|
| 131 |
theme=gr.themes.Soft(
|
| 132 |
-
primary_hue=gr.themes.colors.
|
| 133 |
-
secondary_hue=gr.themes.colors.
|
| 134 |
)
|
| 135 |
) as demo:
|
| 136 |
-
gr.Markdown("""#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
Drop a `.csv` file below, add notes to describe this data if needed, and **the model will analyze the file content and draw figures for you!**""")
|
| 139 |
-
|
| 140 |
with gr.Row():
|
| 141 |
-
file_input = gr.File(label="
|
| 142 |
text_input = gr.Textbox(
|
| 143 |
-
label="Additional
|
| 144 |
-
placeholder="Enter any additional notes
|
| 145 |
)
|
| 146 |
-
|
| 147 |
-
submit = gr.Button("Run
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
label="Data Analyst Agent",
|
| 151 |
-
height=400,
|
| 152 |
-
)
|
| 153 |
-
|
| 154 |
gr.Examples(
|
| 155 |
examples=[["./example/titanic.csv", example_notes]],
|
| 156 |
inputs=[file_input, text_input],
|
|
|
|
| 157 |
cache_examples=False
|
| 158 |
)
|
| 159 |
-
|
| 160 |
# Connect the submit button to the interact_with_agent function
|
| 161 |
submit.click(
|
| 162 |
interact_with_agent,
|
| 163 |
inputs=[file_input, text_input],
|
| 164 |
outputs=[chatbot],
|
| 165 |
-
|
| 166 |
)
|
| 167 |
|
| 168 |
# Launch the Gradio app
|
|
|
|
| 8 |
import seaborn as sns
|
| 9 |
|
| 10 |
# Define constants
|
| 11 |
+
MODEL_NAME = "gpt2" # Publicly accessible model suitable for CPU
|
| 12 |
FIGURES_DIR = "./figures"
|
| 13 |
|
| 14 |
# Ensure the figures directory exists
|
| 15 |
os.makedirs(FIGURES_DIR, exist_ok=True)
|
| 16 |
|
| 17 |
# Initialize tokenizer and model
|
| 18 |
+
print("Loading model and tokenizer...")
|
| 19 |
try:
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 21 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 22 |
+
model.to('cpu') # Ensure the model runs on CPU
|
| 23 |
+
print("Model and tokenizer loaded successfully.")
|
| 24 |
except Exception as e:
|
| 25 |
print(f"Error loading model: {e}")
|
| 26 |
exit(1)
|
| 27 |
|
| 28 |
+
# Define the base prompt for the model
|
| 29 |
base_prompt = """You are an expert data analyst.
|
| 30 |
+
Based on the following data description, determine an appropriate target feature.
|
| 31 |
+
List 3 insightful questions regarding the data.
|
| 32 |
+
Provide detailed answers to each question with relevant statistics.
|
| 33 |
+
Summarize the findings with real-world insights.
|
| 34 |
|
| 35 |
+
Data Description:
|
| 36 |
+
{data_description}
|
|
|
|
| 37 |
|
| 38 |
+
Additional Notes:
|
| 39 |
+
{additional_notes}
|
| 40 |
|
| 41 |
+
Please provide your response in a structured and detailed manner.
|
|
|
|
| 42 |
"""
|
| 43 |
|
| 44 |
example_notes = """This data is about the Titanic wreck in 1912.
|
|
|
|
| 48 |
2nd = Middle
|
| 49 |
3rd = Lower
|
| 50 |
age: Age is fractional if less than 1. If the age is estimated, it is in the form of xx.5
|
| 51 |
+
sibsp: Number of siblings/spouses aboard
|
| 52 |
+
parch: Number of parents/children aboard"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
def get_images_in_directory(directory):
|
| 55 |
"""Retrieve all image file paths from the specified directory."""
|
|
|
|
| 61 |
image_files.append(os.path.join(root, file))
|
| 62 |
return image_files
|
| 63 |
|
| 64 |
+
def generate_summary(prompt):
|
| 65 |
+
"""Generate a summary from the language model based on the prompt."""
|
| 66 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
| 67 |
inputs = inputs.to('cpu') # Ensure the model runs on CPU
|
| 68 |
|
| 69 |
+
# Generate response
|
| 70 |
with torch.no_grad():
|
| 71 |
outputs = model.generate(
|
| 72 |
+
inputs,
|
| 73 |
+
max_length=500,
|
| 74 |
do_sample=True,
|
| 75 |
top_p=0.95,
|
| 76 |
temperature=0.7,
|
| 77 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 78 |
+
pad_token_id=tokenizer.eos_token_id
|
| 79 |
)
|
| 80 |
|
| 81 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 82 |
return response
|
| 83 |
|
| 84 |
+
def analyze_data(data_file_path):
|
| 85 |
+
"""Perform data analysis on the uploaded CSV file."""
|
| 86 |
+
try:
|
| 87 |
+
data = pd.read_csv(data_file_path)
|
| 88 |
+
except Exception as e:
|
| 89 |
+
return None, f"Error loading CSV file: {e}"
|
| 90 |
+
|
| 91 |
+
# Generate data description
|
| 92 |
+
data_description = f"- **Data Summary (.describe()):**\n{data.describe().to_markdown()}\n\n"
|
| 93 |
+
data_description += f"- **Data Types:**\n{data.dtypes.to_frame().to_markdown()}\n"
|
| 94 |
+
|
| 95 |
+
# Determine target variable (for demonstration, assume 'Survived' or first numeric column)
|
| 96 |
+
if 'Survived' in data.columns:
|
| 97 |
+
target = 'Survived'
|
| 98 |
+
else:
|
| 99 |
+
numeric_cols = data.select_dtypes(include='number').columns
|
| 100 |
+
target = numeric_cols[0] if len(numeric_cols) > 0 else data.columns[0]
|
| 101 |
+
|
| 102 |
+
# Generate visualizations
|
| 103 |
+
visualization_paths = []
|
| 104 |
+
|
| 105 |
+
# Correlation heatmap
|
| 106 |
+
plt.figure(figsize=(10, 8))
|
| 107 |
+
sns.heatmap(data.corr(), annot=True, fmt=".2f", cmap='coolwarm')
|
| 108 |
+
plt.title("Correlation Heatmap")
|
| 109 |
+
heatmap_path = os.path.join(FIGURES_DIR, "correlation_heatmap.png")
|
| 110 |
+
plt.savefig(heatmap_path)
|
| 111 |
+
plt.clf()
|
| 112 |
+
visualization_paths.append(heatmap_path)
|
| 113 |
+
|
| 114 |
+
# Distribution of target variable
|
| 115 |
+
plt.figure(figsize=(8, 6))
|
| 116 |
+
sns.countplot(x=target, data=data)
|
| 117 |
+
plt.title(f"Distribution of {target}")
|
| 118 |
+
plt.savefig(os.path.join(FIGURES_DIR, f"{target}_distribution.png"))
|
| 119 |
+
plt.clf()
|
| 120 |
+
visualization_paths.append(os.path.join(FIGURES_DIR, f"{target}_distribution.png"))
|
| 121 |
+
|
| 122 |
+
# Pairplot (limited to first 5 numeric columns for performance)
|
| 123 |
+
numeric_cols = data.select_dtypes(include='number').columns[:5]
|
| 124 |
+
if len(numeric_cols) >= 2:
|
| 125 |
+
sns.pairplot(data[numeric_cols].dropna())
|
| 126 |
+
pairplot_path = os.path.join(FIGURES_DIR, "pairplot.png")
|
| 127 |
+
plt.savefig(pairplot_path)
|
| 128 |
+
plt.clf()
|
| 129 |
+
visualization_paths.append(pairplot_path)
|
| 130 |
+
|
| 131 |
+
return data_description, visualization_paths, target
|
| 132 |
+
|
| 133 |
def interact_with_agent(file_input, additional_notes):
|
| 134 |
"""Process the uploaded file and interact with the language model to analyze data."""
|
| 135 |
# Clear and recreate the figures directory
|
|
|
|
| 137 |
shutil.rmtree(FIGURES_DIR)
|
| 138 |
os.makedirs(FIGURES_DIR, exist_ok=True)
|
| 139 |
|
| 140 |
+
if file_input is None:
|
| 141 |
+
yield [("Error", "No file uploaded.")]
|
|
|
|
|
|
|
|
|
|
| 142 |
return
|
| 143 |
|
| 144 |
+
# Analyze the data
|
| 145 |
+
data_description, visualization_paths, target = analyze_data(file_input.name)
|
| 146 |
+
|
| 147 |
+
if data_description is None:
|
| 148 |
+
yield [("Error", visualization_paths)] # visualization_paths contains the error message
|
| 149 |
+
return
|
| 150 |
|
| 151 |
+
# Construct the prompt for the model
|
| 152 |
+
prompt = base_prompt.format(
|
| 153 |
+
data_description=data_description,
|
| 154 |
+
additional_notes=additional_notes if additional_notes else "None."
|
| 155 |
+
)
|
| 156 |
|
| 157 |
+
# Generate summary from the model
|
| 158 |
+
summary = generate_summary(prompt)
|
| 159 |
|
| 160 |
+
# Prepare chat messages
|
| 161 |
+
messages = [
|
| 162 |
+
("User", "I have uploaded a CSV file for analysis."),
|
| 163 |
+
("Assistant", "⏳ _Analyzing the data..._")
|
| 164 |
+
]
|
| 165 |
|
| 166 |
+
# Append the summary
|
| 167 |
+
messages.append(("Assistant", summary))
|
|
|
|
| 168 |
|
| 169 |
+
# Append images
|
| 170 |
+
for image_path in visualization_paths:
|
|
|
|
| 171 |
messages.append(("Assistant", gr.Image.update(value=image_path)))
|
| 172 |
|
| 173 |
yield messages
|
|
|
|
| 175 |
# Define the Gradio interface
|
| 176 |
with gr.Blocks(
|
| 177 |
theme=gr.themes.Soft(
|
| 178 |
+
primary_hue=gr.themes.colors.blue,
|
| 179 |
+
secondary_hue=gr.themes.colors.orange,
|
| 180 |
)
|
| 181 |
) as demo:
|
| 182 |
+
gr.Markdown("""# 📊 Data Analyst Assistant
|
| 183 |
+
|
| 184 |
+
Upload a `.csv` file, add any additional notes, and **the assistant will analyze the data and generate visualizations and insights for you!**
|
| 185 |
+
|
| 186 |
+
**Example:** [Titanic Dataset](./example/titanic.csv)
|
| 187 |
+
""")
|
| 188 |
|
|
|
|
|
|
|
| 189 |
with gr.Row():
|
| 190 |
+
file_input = gr.File(label="Upload CSV File", file_types=[".csv"])
|
| 191 |
text_input = gr.Textbox(
|
| 192 |
+
label="Additional Notes",
|
| 193 |
+
placeholder="Enter any additional notes or leave blank..."
|
| 194 |
)
|
| 195 |
+
|
| 196 |
+
submit = gr.Button("Run Analysis", variant="primary")
|
| 197 |
+
chatbot = gr.Chatbot(label="Data Analyst Agent")
|
| 198 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
gr.Examples(
|
| 200 |
examples=[["./example/titanic.csv", example_notes]],
|
| 201 |
inputs=[file_input, text_input],
|
| 202 |
+
label="Examples",
|
| 203 |
cache_examples=False
|
| 204 |
)
|
| 205 |
+
|
| 206 |
# Connect the submit button to the interact_with_agent function
|
| 207 |
submit.click(
|
| 208 |
interact_with_agent,
|
| 209 |
inputs=[file_input, text_input],
|
| 210 |
outputs=[chatbot],
|
| 211 |
+
api_name="run_analysis"
|
| 212 |
)
|
| 213 |
|
| 214 |
# Launch the Gradio app
|