DataAnalysis-A / app.py
Anupam202224's picture
Update app.py
af1164d verified
import os
import shutil
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import pandas as pd
import torch
import matplotlib.pyplot as plt
import seaborn as sns
import base64
# Define constants
MODEL_NAME = "facebook/bart-large-cnn" # Fine-tuned for summarization
FIGURES_DIR = "./figures"
EXAMPLE_DIR = "./example"
EXAMPLE_FILE = os.path.join(EXAMPLE_DIR, "titanic.csv")
# Ensure the figures and example directories exist
os.makedirs(FIGURES_DIR, exist_ok=True)
os.makedirs(EXAMPLE_DIR, exist_ok=True)
# Download the Titanic dataset if it doesn't exist
if not os.path.isfile(EXAMPLE_FILE):
print("Downloading the Titanic dataset for examples...")
try:
# Using seaborn's built-in Titanic dataset
titanic = sns.load_dataset('titanic')
titanic.to_csv(EXAMPLE_FILE, index=False)
print(f"Example dataset saved to {EXAMPLE_FILE}.")
except Exception as e:
print(f"Failed to download the Titanic dataset: {e}")
print("Please ensure the 'example/titanic.csv' file exists.")
# Optionally, exit or continue without examples
# exit(1)
# Initialize tokenizer and model
print("Loading model and tokenizer...")
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model.to('cpu') # Ensure the model runs on CPU
print("Model and tokenizer loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
exit(1)
# Define the base prompt for the model
base_prompt = """You are an expert data analyst.
Based on the following data description, determine an appropriate target feature.
List 3 insightful questions regarding the data.
Provide detailed answers to each question with relevant statistics.
Summarize the findings with real-world insights.
Data Description:
{data_description}
Additional Notes:
{additional_notes}
Please provide your response in a structured and detailed manner.
"""
example_notes = """This data is about the Titanic wreck in 1912.
The target figure is the survival of passengers, noted by 'Survived'.
pclass: A proxy for socio-economic status (SES)
1st = Upper
2nd = Middle
3rd = Lower
age: Age is fractional if less than 1. If the age is estimated, it is in the form of xx.5
sibsp: Number of siblings/spouses aboard
parch: Number of parents/children aboard"""
def get_images_in_directory(directory):
"""Retrieve all image file paths from the specified directory."""
image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'}
image_files = []
for root, dirs, files in os.walk(directory):
for file in files:
if os.path.splitext(file)[1].lower() in image_extensions:
image_files.append(os.path.join(root, file))
return image_files
def generate_summary(prompt):
"""Generate a summary from the language model based on the prompt."""
inputs = tokenizer.encode(prompt, return_tensors="pt")
inputs = inputs.to('cpu') # Ensure the model runs on CPU
# Generate response
with torch.no_grad():
summary_ids = model.generate(
inputs,
max_length=500,
num_beams=4,
early_stopping=True
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
def analyze_data(data_file_path):
"""Perform data analysis on the uploaded CSV file."""
try:
data = pd.read_csv(data_file_path)
except Exception as e:
return None, f"Error loading CSV file: {e}", None
# Generate data description
data_description = f"- **Data Summary (.describe()):**\n{data.describe().to_markdown()}\n\n"
data_description += f"- **Data Types:**\n{data.dtypes.to_frame().to_markdown()}\n"
# Determine target variable (for demonstration, assume 'Survived' or first numeric column)
if 'Survived' in data.columns:
target = 'Survived'
else:
numeric_cols = data.select_dtypes(include='number').columns
target = numeric_cols[0] if len(numeric_cols) > 0 else data.columns[0]
# Generate visualizations
visualization_paths = []
# Correlation heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, fmt=".2f", cmap='coolwarm')
plt.title("Correlation Heatmap")
heatmap_path = os.path.join(FIGURES_DIR, "correlation_heatmap.png")
plt.savefig(heatmap_path)
plt.clf()
visualization_paths.append(heatmap_path)
# Distribution of target variable
plt.figure(figsize=(8, 6))
sns.countplot(x=target, data=data)
plt.title(f"Distribution of {target}")
distribution_path = os.path.join(FIGURES_DIR, f"{target}_distribution.png")
plt.savefig(distribution_path)
plt.clf()
visualization_paths.append(distribution_path)
# Pairplot (limited to first 5 numeric columns for performance)
numeric_cols = data.select_dtypes(include='number').columns[:5]
if len(numeric_cols) >= 2:
sns.pairplot(data[numeric_cols].dropna())
pairplot_path = os.path.join(FIGURES_DIR, "pairplot.png")
plt.savefig(pairplot_path)
plt.clf()
visualization_paths.append(pairplot_path)
return data_description, visualization_paths, target
def interact_with_agent(file_input, additional_notes):
"""Process the uploaded file and interact with the language model to analyze data."""
# Clear and recreate the figures directory
if os.path.exists(FIGURES_DIR):
shutil.rmtree(FIGURES_DIR)
os.makedirs(FIGURES_DIR, exist_ok=True)
if file_input is None:
return [{"role": "assistant", "content": "❌ No file uploaded. Please upload a CSV file to proceed."}]
# Analyze the data
data_description, visualization_paths, target = analyze_data(file_input.name)
if data_description is None:
return [{"role": "assistant", "content": data_description}] # data_description contains the error message
# Construct the prompt for the model
prompt = base_prompt.format(
data_description=data_description,
additional_notes=additional_notes if additional_notes else "None."
)
# Generate summary from the model
summary = generate_summary(prompt)
# Prepare chat messages in 'messages' format
messages = [
{"role": "user", "content": "I have uploaded a CSV file for analysis."},
{"role": "assistant", "content": "⏳ _Analyzing the data..._"}
]
# Append the summary
messages.append({"role": "assistant", "content": summary})
# Append images by converting them to Base64
for image_path in visualization_paths:
# Ensure the image path is valid before attempting to display
if os.path.isfile(image_path):
with open(image_path, "rb") as img_file:
img_bytes = img_file.read()
encoded_img = base64.b64encode(img_bytes).decode()
img_md = f"![{os.path.basename(image_path)}](data:image/png;base64,{encoded_img})"
messages.append({"role": "assistant", "content": img_md})
else:
messages.append({"role": "assistant", "content": f"⚠️ Unable to find image: {image_path}"})
return messages
# Define the Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue=gr.themes.colors.blue,
secondary_hue=gr.themes.colors.orange,
)
) as demo:
gr.Markdown("""# 📊 Data Analyst Assistant
Upload a `.csv` file, add any additional notes, and **the assistant will analyze the data and generate visualizations and insights for you!**
**Example:** [Titanic Dataset](./example/titanic.csv)
""")
with gr.Row():
file_input = gr.File(label="Upload CSV File", file_types=[".csv"])
text_input = gr.Textbox(
label="Additional Notes",
placeholder="Enter any additional notes or leave blank..."
)
submit = gr.Button("Run Analysis", variant="primary")
chatbot = gr.Chatbot(label="Data Analyst Agent", type='messages', height=500)
# Handle examples only if the example file exists
if os.path.isfile(EXAMPLE_FILE):
gr.Examples(
examples=[[EXAMPLE_FILE, example_notes]],
inputs=[file_input, text_input],
label="Examples",
cache_examples=False
)
else:
gr.Markdown("**No example files available.** Please upload your own CSV files.")
# Connect the submit button to the interact_with_agent function
submit.click(
interact_with_agent,
inputs=[file_input, text_input],
outputs=[chatbot],
api_name="run_analysis"
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch(share=True)