File size: 8,302 Bytes
03ccac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c8a4a7
 
03ccac1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import pandas as pd
import numpy as np
import gradio as gr
from datetime import datetime
import plotly.express as px
import plotly.graph_objects as go
from PIL import Image
import pytesseract
import io
import json
import cv2
import os
import numpy as np

class DocumentProcessor:
    def __init__(self):
        self.upload_folder = "uploaded_documents"
        os.makedirs(self.upload_folder, exist_ok=True)
    
    def process_image(self, image):
        try:
            if image is None:
                return "No image uploaded", None
            
            # Convert gradio image input to CV2 format
            if isinstance(image, np.ndarray):
                img_array = image
            else:
                img_array = np.array(image)
            
            # Convert to grayscale if the image is in color
            if len(img_array.shape) == 3:
                gray = cv2.cvtColor(img_array, cv2.COLOR_BGR2GRAY)
            else:
                gray = img_array
            
            # Image preprocessing
            gray = cv2.convertScaleAbs(gray, alpha=1.5, beta=0)
            _, threshold = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
            
            # Perform OCR
            text = pytesseract.image_to_string(threshold)
            
            # Parse the extracted text
            parsed_data = self.parse_text(text)
            
            return f"Document processed successfully!\n\nExtracted Text:\n{text}", parsed_data
            
        except Exception as e:
            return f"Error processing document: {str(e)}", None
    
    def parse_text(self, text):
        lines = text.split('\n')
        parsed_data = {
            'raw_text': text,
            'line_count': len(lines),
            'processed_date': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            'extracted_lines': [line for line in lines if line.strip()]
        }
        return parsed_data

class BusinessManagementSystem:
    def __init__(self):
        self.doc_processor = DocumentProcessor()
        self.load_data()
    
    def load_data(self):
        try:
            self.bank_data = pd.read_csv('bank_statements.csv')
            self.marketing_data = pd.read_csv('marketing_data.csv')
            self.account_data = pd.read_csv('account_data.csv')
            self.invoices = pd.read_csv('invoices.csv')
        except FileNotFoundError:
            print("CSV files not found. Using mock data...")
            self.bank_data = self.mock_bank_data()
            self.marketing_data = self.mock_marketing_data()
    
    def mock_bank_data(self):
        return pd.DataFrame({
            'date': pd.date_range(start='2024-01-01', periods=10),
            'transaction': [f'Transaction {i}' for i in range(10)],
            'amount': np.random.randint(1000, 10000, 10)
        })
    
    def mock_marketing_data(self):
        return pd.DataFrame({
            'campaign': [f'Campaign {i}' for i in range(5)],
            'clicks': np.random.randint(100, 1000, 5),
            'conversions': np.random.randint(10, 100, 5)
        })
    
    def process_document(self, image):
        return self.doc_processor.process_image(image)
    
    def generate_bank_report(self):
        try:
            fig = go.Figure()
            fig.add_trace(go.Scatter(
                x=self.bank_data['date'],
                y=self.bank_data['amount'],
                mode='lines+markers',
                name='Transactions'
            ))
            fig.update_layout(
                title='Bank Transaction History',
                xaxis_title='Date',
                yaxis_title='Amount ($)'
            )
            
            total_transactions = len(self.bank_data)
            total_amount = self.bank_data['amount'].sum()
            avg_transaction = self.bank_data['amount'].mean()
            
            summary = f"""
            Banking Summary:
            Total Transactions: {total_transactions}
            Total Amount: ${total_amount:,.2f}
            Average Transaction: ${avg_transaction:,.2f}
            """
            
            return fig, summary
        except Exception as e:
            return None, f"Error generating bank report: {str(e)}"
    
    def analyze_marketing(self):
        try:
            self.marketing_data['conversion_rate'] = (
                self.marketing_data['conversions'] / self.marketing_data['clicks'] * 100
            )
            
            fig = px.bar(
                self.marketing_data,
                x='campaign',
                y=['clicks', 'conversions'],
                title='Campaign Performance',
                barmode='group'
            )
            
            summary = f"""
            Marketing Summary:
            Total Campaigns: {len(self.marketing_data)}
            Total Clicks: {self.marketing_data['clicks'].sum():,}
            Total Conversions: {self.marketing_data['conversions'].sum():,}
            Average Conversion Rate: {self.marketing_data['conversion_rate'].mean():.2f}%
            """
            
            return fig, summary
        except Exception as e:
            return None, f"Error analyzing marketing data: {str(e)}"

def create_gradio_interface():
    bms = BusinessManagementSystem()
    
    with gr.Blocks(theme=gr.themes.Soft()) as interface:
        gr.Markdown("""
        # AI-Driven Business Management System
        Upload documents, analyze banking data, and track marketing campaigns.
        """)
        
        with gr.Tabs():
            # Document Processing Tab
            with gr.Tab("Document Processing"):
                gr.Markdown("""
                ### Upload and Process Documents
                Support for PNG, JPG, and PDF files. The system will extract text and data from the documents.
                """)
                
                with gr.Row():
                    with gr.Column():
                        doc_input = gr.Image(
                            label="Upload Document",
                            type="numpy"
                        )
                        process_btn = gr.Button("Process Document", variant="primary")
                    
                    with gr.Column():
                        doc_output = gr.Textbox(
                            label="Processing Results",
                            lines=10
                        )
                        json_output = gr.JSON(
                            label="Extracted Data"
                        )
                
                process_btn.click(
                    fn=bms.process_document,
                    inputs=[doc_input],
                    outputs=[doc_output, json_output]
                )
            
            # Banking Tab
            with gr.Tab("Banking"):
                gr.Markdown("### Banking Analysis")
                bank_btn = gr.Button("Generate Bank Report", variant="primary")
                bank_plot = gr.Plot(label="Transaction History")
                bank_summary = gr.Textbox(
                    label="Banking Summary",
                    lines=5
                )
                
                bank_btn.click(
                    fn=bms.generate_bank_report,
                    inputs=[],
                    outputs=[bank_plot, bank_summary]
                )
            
            # Marketing Tab
            with gr.Tab("Marketing"):
                gr.Markdown("### Marketing Campaign Analysis")
                marketing_btn = gr.Button("Analyze Marketing Campaigns", variant="primary")
                marketing_plot = gr.Plot(label="Campaign Performance")
                marketing_summary = gr.Textbox(
                    label="Marketing Summary",
                    lines=5
                )
                
                marketing_btn.click(
                    fn=bms.analyze_marketing,
                    inputs=[],
                    outputs=[marketing_plot, marketing_summary]
                )
    
    return interface

# For Google Colab, first run these installations
#!pip install -q pytesseract opencv-python
#!apt-get install -y tesseract-ocr > /dev/null 2>&1

# Launch the interface
if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch(share=True)