Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import torch
|
6 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
7 |
+
from PIL import Image
|
8 |
+
from difflib import get_close_matches
|
9 |
+
from typing import Optional, Dict, Any
|
10 |
+
import json
|
11 |
+
import io
|
12 |
+
from datasets import load_dataset # Import the datasets library
|
13 |
+
|
14 |
+
# -------------------------------------------------
|
15 |
+
# Configuration
|
16 |
+
# -------------------------------------------------
|
17 |
+
|
18 |
+
# Define insulin types and their durations and peak times
|
19 |
+
INSULIN_TYPES = {
|
20 |
+
"Rapid-Acting": {"onset": 0.25, "duration": 4, "peak_time": 1.0}, # Onset in hours, duration in hours, peak time in hours
|
21 |
+
"Long-Acting": {"onset": 2, "duration": 24, "peak_time": 8},
|
22 |
+
}
|
23 |
+
|
24 |
+
#Define basal rates
|
25 |
+
DEFAULT_BASAL_RATES = {
|
26 |
+
"00:00-06:00": 0.8,
|
27 |
+
"06:00-12:00": 1.0,
|
28 |
+
"12:00-18:00": 0.9,
|
29 |
+
"18:00-24:00": 0.7
|
30 |
+
}
|
31 |
+
|
32 |
+
# -------------------------------------------------
|
33 |
+
# Load Food Data from Hugging Face Dataset
|
34 |
+
# -------------------------------------------------
|
35 |
+
|
36 |
+
def load_food_data(dataset_name="Anupam007/Diabetic"):
|
37 |
+
try:
|
38 |
+
dataset = load_dataset(dataset_name)
|
39 |
+
food_data = dataset['train'].to_pandas()
|
40 |
+
|
41 |
+
# Normalize column names to lowercase
|
42 |
+
food_data.columns = [col.lower() for col in food_data.columns]
|
43 |
+
|
44 |
+
# Remove unnamed columns
|
45 |
+
food_data = food_data.loc[:, ~food_data.columns.str.contains('^unnamed')]
|
46 |
+
|
47 |
+
# Normalize food_name column to lowercase: Crucial for matching
|
48 |
+
if 'food_name' in food_data.columns:
|
49 |
+
food_data['food_name'] = food_data['food_name'].str.lower()
|
50 |
+
print("Unique Food Names in Dataset:")
|
51 |
+
print(food_data['food_name'].unique())
|
52 |
+
else:
|
53 |
+
print("Warning: 'food_name' column not found in dataset.")
|
54 |
+
food_data = pd.DataFrame({
|
55 |
+
'food_category': ['starch'],
|
56 |
+
'food_subcategory': ['bread'],
|
57 |
+
'food_name': ['white bread'],
|
58 |
+
'serving_description': ['servingsize'],
|
59 |
+
'serving_amount': [29],
|
60 |
+
'serving_unit': ['g'],
|
61 |
+
'carbohydrate_grams': [15],
|
62 |
+
'notes': ['default']
|
63 |
+
})
|
64 |
+
|
65 |
+
#Print first 5 rows to check columns and values
|
66 |
+
print("First 5 rows of loaded data from Hugging Face Dataset:")
|
67 |
+
print(food_data.head())
|
68 |
+
|
69 |
+
return food_data
|
70 |
+
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error loading Hugging Face Dataset: {e}")
|
73 |
+
# Provide minimal default data in case of error
|
74 |
+
food_data = pd.DataFrame({
|
75 |
+
'food_category': ['starch'],
|
76 |
+
'food_subcategory': ['bread'],
|
77 |
+
'food_name': ['white bread'], # lowercase default
|
78 |
+
'serving_description': ['servingsize'],
|
79 |
+
'serving_amount': [29],
|
80 |
+
'serving_unit': ['g'],
|
81 |
+
'carbohydrate_grams': [15],
|
82 |
+
'notes': ['default']
|
83 |
+
})
|
84 |
+
return food_data
|
85 |
+
|
86 |
+
# -------------------------------------------------
|
87 |
+
# Load Food Classification Model
|
88 |
+
# -------------------------------------------------
|
89 |
+
try:
|
90 |
+
# Load model directly
|
91 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
92 |
+
|
93 |
+
processor = AutoImageProcessor.from_pretrained("rajistics/finetuned-indian-food")
|
94 |
+
model = AutoModelForImageClassification.from_pretrained("rajistics/finetuned-indian-food")
|
95 |
+
model_loaded = True #Flag for error handling in other defs
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Model Load Error: {e}") # include e in print statement
|
98 |
+
model_loaded = False
|
99 |
+
processor = None
|
100 |
+
model = None
|
101 |
+
|
102 |
+
def classify_food(image):
|
103 |
+
|
104 |
+
inputs = processor(images=image, return_tensors="pt")
|
105 |
+
print(f"Processed image keys: {inputs.keys()}") # Print the keys of the inputs dictionary
|
106 |
+
if 'pixel_values' in inputs:
|
107 |
+
print(f"Pixel values shape: {inputs['pixel_values'].shape}")
|
108 |
+
print(f"Pixel values type: {inputs['pixel_values'].dtype}")
|
109 |
+
print(f"First few pixel values: {inputs['pixel_values'][0, :5]}") # Print a small slice
|
110 |
+
else:
|
111 |
+
print("Pixel values not found in inputs!")
|
112 |
+
|
113 |
+
try:
|
114 |
+
if not model_loaded:
|
115 |
+
print("Model not loaded, returning 'Unknown'")
|
116 |
+
return "Unknown"
|
117 |
+
|
118 |
+
print(f"Image type: {type(image)}") # Check the type of the image
|
119 |
+
|
120 |
+
if isinstance(image, np.ndarray):
|
121 |
+
print("Image is a numpy array, converting to PIL Image")
|
122 |
+
image = Image.fromarray(image)
|
123 |
+
|
124 |
+
print(f"Image mode: {image.mode}") # Check image mode (e.g., RGB, L)
|
125 |
+
|
126 |
+
inputs = processor(images=image, return_tensors="pt")
|
127 |
+
print(f"Processed image: {inputs}") # Print the output of the processor
|
128 |
+
|
129 |
+
with torch.no_grad():
|
130 |
+
outputs = model(**inputs)
|
131 |
+
predicted_idx = torch.argmax(outputs.logits, dim=-1).item()
|
132 |
+
food_name = model.config.id2label.get(predicted_idx, "Unknown Food")
|
133 |
+
print(f"Predicted food name before lower: {food_name}")
|
134 |
+
food_name = food_name.lower() # Convert classification to lowercase
|
135 |
+
print(f"Predicted food name after lower: {food_name}") # Print the predicted food name
|
136 |
+
return food_name
|
137 |
+
|
138 |
+
except Exception as e:
|
139 |
+
print(f"Classify food error: {e}") # Print the full error message
|
140 |
+
return "Unknown" # If an exception arises make sure to create a default case
|
141 |
+
|
142 |
+
# -------------------------------------------------
|
143 |
+
# USDA API Integration - REMOVED for local HF Spaces deployment
|
144 |
+
# -------------------------------------------------
|
145 |
+
|
146 |
+
def get_food_nutrition(food_name: str, food_data, portion_size: float = 1.0) -> Optional[Dict[str, Any]]:
|
147 |
+
"""Get carbohydrate content for the given food""" #No USDA anymore
|
148 |
+
print("get_food_nutrition function called") # Ensure the function is called
|
149 |
+
try:
|
150 |
+
# First try the local CSV database
|
151 |
+
food_name_lower = food_name.lower() # Ensure input is also lowercase
|
152 |
+
food_names = food_data['food_name'].str.lower().tolist() #Already lowercased during load
|
153 |
+
|
154 |
+
print(f"Searching for: {food_name_lower}") # Debugging: What are we searching for?
|
155 |
+
matches = get_close_matches(food_name_lower, food_names, n=1, cutoff=0.5)
|
156 |
+
|
157 |
+
print(f"Matches found: {matches}") # Debugging: See what matches are found
|
158 |
+
|
159 |
+
if matches:
|
160 |
+
# Use local database match
|
161 |
+
matched_row = food_data[food_data['food_name'].str.lower() == matches[0]]
|
162 |
+
|
163 |
+
if not matched_row.empty:
|
164 |
+
row = matched_row.iloc[0]
|
165 |
+
|
166 |
+
# Debugging: Print the entire row
|
167 |
+
print(f"Matched row from CSV: {row}")
|
168 |
+
|
169 |
+
# Explicitly check for column existence and valid data
|
170 |
+
carb_col = 'carbohydrate_grams'
|
171 |
+
amount_col = 'serving_amount'
|
172 |
+
unit_col = 'serving_unit'
|
173 |
+
if carb_col not in row or pd.isna(row[carb_col]):
|
174 |
+
print(f"Warning: '{carb_col}' is missing or NaN in CSV")
|
175 |
+
base_carbs = 0.0
|
176 |
+
else:
|
177 |
+
base_carbs = row[carb_col]
|
178 |
+
try:
|
179 |
+
base_carbs = float(base_carbs) # Ensure it's a float
|
180 |
+
except ValueError:
|
181 |
+
print(f"Warning: '{carb_col}' is not a valid number in CSV")
|
182 |
+
base_carbs = 0.0
|
183 |
+
|
184 |
+
if amount_col not in row or unit_col not in row or pd.isna(row[amount_col]) or pd.isna(row[unit_col]):
|
185 |
+
serving_size = "Unknown"
|
186 |
+
print(f"Warning: '{amount_col}' or '{unit_col}' is missing in CSV")
|
187 |
+
else:
|
188 |
+
serving_size = f"{row[amount_col]} {row[unit_col]}"
|
189 |
+
|
190 |
+
adjusted_carbs = base_carbs * portion_size
|
191 |
+
|
192 |
+
return {
|
193 |
+
'matched_food': row['food_name'],
|
194 |
+
'category': row['food_category'] if 'food_category' in row and not pd.isna(row['food_category']) else 'Unknown',
|
195 |
+
'subcategory': row['food_subcategory'] if 'food_subcategory' in row and not pd.isna(row['food_subcategory']) else 'Unknown',
|
196 |
+
'base_carbs': base_carbs,
|
197 |
+
'adjusted_carbs': adjusted_carbs,
|
198 |
+
'serving_size': serving_size,
|
199 |
+
'portion_multiplier': portion_size,
|
200 |
+
'notes': row['notes'] if 'notes' in row and not pd.isna(row['notes']) else ''
|
201 |
+
}
|
202 |
+
|
203 |
+
# If no match found in local database
|
204 |
+
print(f"No match found in CSV for {food_name}") # Debugging line
|
205 |
+
print(f"No nutrition information found for {food_name} in the local database.") # Debugging line
|
206 |
+
return None
|
207 |
+
except Exception as e:
|
208 |
+
print(f"Error in get_food_nutrition: {e}")
|
209 |
+
return None
|
210 |
+
|
211 |
+
# -------------------------------------------------
|
212 |
+
# Insulin and Glucose Calculations
|
213 |
+
# -------------------------------------------------
|
214 |
+
def get_basal_rate(current_time_hour, basal_rates):
|
215 |
+
"""Gets the appropriate basal rate for a given time of day."""
|
216 |
+
for interval, rate in basal_rates.items():
|
217 |
+
try: # add a try and except to handle values in intervals that do not have the format "start-end"
|
218 |
+
parts = interval.split(":")[0].split("-")
|
219 |
+
if len(parts) == 2: # Check if there are two parts (start and end)
|
220 |
+
start_hour, end_hour = map(int, parts)
|
221 |
+
if start_hour <= current_time_hour < end_hour or (start_hour <= current_time_hour and end_hour == 24):
|
222 |
+
return rate
|
223 |
+
except Exception as e: # include exception in exception handling
|
224 |
+
print(f"Warning: Invalid interval format: {interval}. Skipping. Error: {e}") #Inform user of formatting issues
|
225 |
+
|
226 |
+
return 0 # Default if no matching interval
|
227 |
+
|
228 |
+
def insulin_activity(t, insulin_type, bolus_dose, bolus_duration=0):
|
229 |
+
"""Models insulin activity over time."""
|
230 |
+
insulin_data = INSULIN_TYPES.get(insulin_type)
|
231 |
+
if not insulin_data:
|
232 |
+
return 0 # Or raise an error
|
233 |
+
|
234 |
+
# Simple exponential decay model (replace with a more sophisticated model)
|
235 |
+
peak_time = insulin_data['peak_time'] # Time in hours at which insulin activity is at max level
|
236 |
+
duration = insulin_data['duration'] # Total time for which insulin stays in effect
|
237 |
+
if t < peak_time:
|
238 |
+
activity = (bolus_dose * t / peak_time) * np.exp(1- t/peak_time) # rising activity
|
239 |
+
elif t < duration:
|
240 |
+
activity = bolus_dose * np.exp((peak_time - t) / (duration - peak_time)) # decaying activity
|
241 |
+
else:
|
242 |
+
activity = 0
|
243 |
+
|
244 |
+
if bolus_duration > 0: # Extended Bolus
|
245 |
+
if 0 <= t <= bolus_duration:
|
246 |
+
# Linear release of insulin over bolus_duration
|
247 |
+
effective_dose = bolus_dose / bolus_duration
|
248 |
+
duration = INSULIN_TYPES.get(insulin_type)['duration']
|
249 |
+
if t < duration:
|
250 |
+
activity = effective_dose
|
251 |
+
else:
|
252 |
+
activity = 0
|
253 |
+
else:
|
254 |
+
activity = 0
|
255 |
+
|
256 |
+
return activity
|
257 |
+
|
258 |
+
def calculate_active_insulin(insulin_history, current_time):
|
259 |
+
"""Calculates remaining active insulin from previous doses."""
|
260 |
+
active_insulin = 0
|
261 |
+
for dose_time, dose_amount, insulin_type, bolus_duration in insulin_history:
|
262 |
+
elapsed_time = current_time - dose_time
|
263 |
+
remaining_activity = insulin_activity(elapsed_time, insulin_type, dose_amount, bolus_duration)
|
264 |
+
active_insulin += remaining_activity
|
265 |
+
return active_insulin
|
266 |
+
|
267 |
+
def calculate_insulin_needs(carbs, glucose_current, glucose_target, tdd, weight, insulin_type="Rapid-Acting", override_correction_dose = None):
|
268 |
+
"""Calculate insulin needs for Type 1 diabetes"""
|
269 |
+
if tdd <= 0:
|
270 |
+
return {
|
271 |
+
'error': 'Total Daily Dose (TDD) must be greater than 0'
|
272 |
+
}
|
273 |
+
insulin_data = INSULIN_TYPES.get(insulin_type)
|
274 |
+
if not insulin_data:
|
275 |
+
return {
|
276 |
+
'error': "Invalid insulin type. Choose from" + ", ".join(INSULIN_TYPES.keys())
|
277 |
+
}
|
278 |
+
|
279 |
+
# Refined calculations
|
280 |
+
icr = (450 if weight <= 45 else 500) / tdd
|
281 |
+
isf = 1700 / tdd
|
282 |
+
|
283 |
+
# Calculate correction dose
|
284 |
+
glucose_difference = glucose_current - glucose_target
|
285 |
+
correction_dose = glucose_difference / isf
|
286 |
+
|
287 |
+
if override_correction_dose is not None: # Check for None
|
288 |
+
correction_dose = override_correction_dose
|
289 |
+
|
290 |
+
# Calculate carb dose
|
291 |
+
carb_dose = carbs / icr
|
292 |
+
|
293 |
+
# Calculate total bolus
|
294 |
+
total_bolus = max(0, carb_dose + correction_dose)
|
295 |
+
|
296 |
+
# Calculate basal
|
297 |
+
basal_dose = weight * 0.5
|
298 |
+
|
299 |
+
return {
|
300 |
+
'icr': round(icr, 2),
|
301 |
+
'isf': round(isf, 2),
|
302 |
+
'correction_dose': round(correction_dose, 2),
|
303 |
+
'carb_dose': round(carb_dose, 2),
|
304 |
+
'total_bolus': round(total_bolus, 2),
|
305 |
+
'basal_dose': round(basal_dose, 2),
|
306 |
+
'insulin_type': insulin_type,
|
307 |
+
'insulin_onset': insulin_data['onset'],
|
308 |
+
'insulin_duration': insulin_data['duration'],
|
309 |
+
'peak_time': insulin_data['peak_time'],
|
310 |
+
}
|
311 |
+
|
312 |
+
def create_detailed_report(nutrition_info, insulin_info, current_basal_rate):
|
313 |
+
"""Create a detailed report of carbs and insulin calculations"""
|
314 |
+
carb_details = f"""
|
315 |
+
FOOD DETAILS:
|
316 |
+
-------------
|
317 |
+
Detected Food: {nutrition_info['matched_food']}
|
318 |
+
Category: {nutrition_info['category']}
|
319 |
+
Subcategory: {nutrition_info['subcategory']}
|
320 |
+
|
321 |
+
CARBOHYDRATE INFORMATION:
|
322 |
+
------------------------
|
323 |
+
Standard Serving Size: {nutrition_info['serving_size']}
|
324 |
+
Carbs per Serving: {nutrition_info['base_carbs']}g
|
325 |
+
Portion Multiplier: {nutrition_info['portion_multiplier']}x
|
326 |
+
Total Carbs: {nutrition_info['adjusted_carbs']}g
|
327 |
+
Notes: {nutrition_info['notes']}
|
328 |
+
"""
|
329 |
+
|
330 |
+
insulin_details = f"""
|
331 |
+
INSULIN CALCULATIONS:
|
332 |
+
--------------------
|
333 |
+
ICR (Insulin to Carb Ratio): 1:{insulin_info['icr']}
|
334 |
+
ISF (Insulin Sensitivity Factor): 1:{insulin_info['isf']}
|
335 |
+
Insulin Type: {insulin_info['insulin_type']}
|
336 |
+
Onset: {insulin_info['insulin_onset']} hours
|
337 |
+
Duration: {insulin_info['insulin_duration']} hours
|
338 |
+
Peak Time: {insulin_info['peak_time']} hours
|
339 |
+
|
340 |
+
RECOMMENDED DOSES:
|
341 |
+
-----------------
|
342 |
+
Correction Dose: {insulin_info['correction_dose']} units
|
343 |
+
Carb Dose: {insulin_info['carb_dose']} units
|
344 |
+
Total Bolus: {insulin_info['total_bolus']} units
|
345 |
+
Daily Basal: {insulin_info['basal_dose']} units
|
346 |
+
Current Basal Rate: {current_basal_rate} units/hour
|
347 |
+
"""
|
348 |
+
|
349 |
+
return carb_details, insulin_details
|
350 |
+
|
351 |
+
# -------------------------------------------------
|
352 |
+
# Main Dashboard Function
|
353 |
+
# -------------------------------------------------
|
354 |
+
def diabetes_dashboard(initial_glucose, food_image, stress_level, sleep_hours, time_hours,
|
355 |
+
weight, tdd, target_glucose, exercise_duration, exercise_intensity, portion_size, insulin_type,
|
356 |
+
override_correction_dose, extended_bolus_duration, basal_rates_input):
|
357 |
+
"""Main dashboard function"""
|
358 |
+
try:
|
359 |
+
# 0. Load Files
|
360 |
+
food_data = load_food_data() #loads HF Datasets from the function
|
361 |
+
|
362 |
+
# 1. Food Classification and Carb Calculation
|
363 |
+
food_name = classify_food(food_image) # This line is now inside the function
|
364 |
+
print(f"Classified food name: {food_name}") # Debugging: What is classified as? # Corrected indentation
|
365 |
+
nutrition_info = get_food_nutrition(food_name, food_data, portion_size) # Changed to pass in data
|
366 |
+
if not nutrition_info:
|
367 |
+
# Try with generic categories if specific food not found
|
368 |
+
generic_terms = food_name.split()
|
369 |
+
for term in generic_terms:
|
370 |
+
nutrition_info = get_food_nutrition(term, food_data, portion_size) # Changed to pass in data
|
371 |
+
if nutrition_info:
|
372 |
+
break
|
373 |
+
|
374 |
+
if not nutrition_info:
|
375 |
+
return (
|
376 |
+
f"Could not find nutrition information for: {food_name} in the local database", # Removed USDA ref
|
377 |
+
"No insulin calculations available",
|
378 |
+
None,
|
379 |
+
None,
|
380 |
+
None
|
381 |
+
)
|
382 |
+
|
383 |
+
# 2. Insulin Calculations
|
384 |
+
try:
|
385 |
+
basal_rates_dict = json.loads(basal_rates_input)
|
386 |
+
except Exception as e: # added exception handling
|
387 |
+
print(f"Basal rates JSON invalid, using default. Error: {e}")
|
388 |
+
basal_rates_dict = DEFAULT_BASAL_RATES
|
389 |
+
|
390 |
+
insulin_info = calculate_insulin_needs(
|
391 |
+
nutrition_info['adjusted_carbs'],
|
392 |
+
initial_glucose,
|
393 |
+
target_glucose,
|
394 |
+
tdd,
|
395 |
+
weight,
|
396 |
+
insulin_type,
|
397 |
+
override_correction_dose # Pass override
|
398 |
+
)
|
399 |
+
|
400 |
+
if 'error' in insulin_info:
|
401 |
+
return insulin_info['error'], None, None, None, None
|
402 |
+
|
403 |
+
# 3. Create detailed reports
|
404 |
+
current_time_for_basal = 12 #Arbitrary number to pull from Basal Rates Dict
|
405 |
+
current_basal_rate = get_basal_rate(current_time_for_basal, basal_rates_dict) # Added basal rate to the function and report.
|
406 |
+
carb_details, insulin_details = create_detailed_report(nutrition_info, insulin_info, current_basal_rate)
|
407 |
+
|
408 |
+
# 4. Glucose Prediction
|
409 |
+
hours = list(range(time_hours))
|
410 |
+
glucose_levels = []
|
411 |
+
current_glucose = initial_glucose
|
412 |
+
insulin_history = [] # This will store all past doses for active insulin calculations
|
413 |
+
# simulate that a dose has just been given to the patient at t=0
|
414 |
+
insulin_history.append((0, insulin_info['total_bolus'], insulin_info['insulin_type'], extended_bolus_duration)) # Pass bolus duration
|
415 |
+
|
416 |
+
for t in hours:
|
417 |
+
# Factor in carbs effect (peaks at 1-2 hours)
|
418 |
+
carb_effect = nutrition_info['adjusted_carbs'] * 0.1 * np.exp(-(t - 1.5) ** 2 / 2)
|
419 |
+
|
420 |
+
# Factor in insulin effect (peaks at 2-3 hours)
|
421 |
+
# Original model: insulin_effect = insulin_info['total_bolus'] * 2 * np.exp(-(t-2.5)**2/2)
|
422 |
+
# get effect based on amount of insulin still active from previous boluses
|
423 |
+
active_insulin = calculate_active_insulin(insulin_history, t)
|
424 |
+
insulin_effect = insulin_activity(t, insulin_type, active_insulin, extended_bolus_duration) # Pass bolus duration
|
425 |
+
|
426 |
+
# Get the basal effect
|
427 |
+
basal_rate = get_basal_rate(t, basal_rates_dict)
|
428 |
+
basal_insulin_effect = basal_rate # Units per hour
|
429 |
+
|
430 |
+
# Add stress effect
|
431 |
+
stress_effect = stress_level * 2
|
432 |
+
|
433 |
+
# Add sleep effect
|
434 |
+
sleep_effect = abs(8 - sleep_hours) * 5
|
435 |
+
|
436 |
+
# Add exercise effect
|
437 |
+
exercise_effect = (exercise_duration / 60) * exercise_intensity * 2
|
438 |
+
|
439 |
+
# Calculate glucose with all factors
|
440 |
+
glucose = (current_glucose + carb_effect - insulin_effect +
|
441 |
+
stress_effect + sleep_effect + exercise_effect - basal_insulin_effect)
|
442 |
+
glucose_levels.append(max(70, min(400, glucose)))
|
443 |
+
current_glucose = glucose_levels[-1]
|
444 |
+
|
445 |
+
# 5. Create visualization
|
446 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
447 |
+
ax.plot(hours, glucose_levels, 'b-', label='Predicted Glucose')
|
448 |
+
ax.axhline(y=target_glucose, color='g', linestyle='--', label='Target')
|
449 |
+
ax.fill_between(hours, [70] * len(hours), [180] * len(hours),
|
450 |
+
alpha=0.1, color='g', label='Target Range')
|
451 |
+
ax.set_ylabel('Glucose (mg/dL)')
|
452 |
+
ax.set_xlabel('Hours')
|
453 |
+
ax.set_title('Predicted Blood Glucose Over Time')
|
454 |
+
ax.legend()
|
455 |
+
ax.grid(True)
|
456 |
+
|
457 |
+
return (
|
458 |
+
carb_details,
|
459 |
+
insulin_details,
|
460 |
+
insulin_info['basal_dose'],
|
461 |
+
insulin_info['total_bolus'],
|
462 |
+
fig
|
463 |
+
)
|
464 |
+
|
465 |
+
except Exception as e:
|
466 |
+
return f"Error: {str(e)}", None, None, None, None
|
467 |
+
|
468 |
+
# -------------------------------------------------
|
469 |
+
# Gradio Interface Setup
|
470 |
+
# -------------------------------------------------
|
471 |
+
with gr.Blocks() as app: # using Blocks API to manually design the layout
|
472 |
+
gr.Markdown("# Type 1 Diabetes Management Dashboard")
|
473 |
+
|
474 |
+
with gr.Tab("Glucose & Meal"):
|
475 |
+
with gr.Row():
|
476 |
+
initial_glucose = gr.Number(label="Current Blood Glucose (mg/dL)", value=120)
|
477 |
+
food_image = gr.Image(label="Food Image", type="pil") # Now a file upload
|
478 |
+
with gr.Row():
|
479 |
+
portion_size = gr.Slider(0.1, 3, step=0.1, label="Portion Size Multiplier", value=1.0)
|
480 |
+
|
481 |
+
with gr.Tab("Insulin"):
|
482 |
+
with gr.Column(): # Place inputs in a column layout
|
483 |
+
insulin_type = gr.Dropdown(choices=list(INSULIN_TYPES.keys()), label="Insulin Type", value="Rapid-Acting")
|
484 |
+
override_correction_dose = gr.Number(label="Override Correction Dose (Units)", value=None)
|
485 |
+
extended_bolus_duration = gr.Number(label="Extended Bolus Duration (Hours)", value=0)
|
486 |
+
|
487 |
+
with gr.Tab("Basal Settings"):
|
488 |
+
with gr.Column():
|
489 |
+
basal_rates_input = gr.Textbox(label="Basal Rates (JSON)", lines=3,
|
490 |
+
value="""{"00:00-06:00": 0.8, "06:00-12:00": 1.0, "12:00-18:00": 0.9, "18:00-24:00": 0.7}""")
|
491 |
+
|
492 |
+
with gr.Tab("Other Factors"):
|
493 |
+
with gr.Accordion("Factors affecting Glucose levels", open=False): # keep advanced options collapsed by default
|
494 |
+
weight = gr.Number(label="Weight (kg)", value=70)
|
495 |
+
tdd = gr.Number(label="Total Daily Dose (TDD) of insulin (units)", value=40)
|
496 |
+
target_glucose = gr.Number(label="Target Blood Glucose (mg/dL)", value=100)
|
497 |
+
stress_level = gr.Slider(1, 10, step=1, label="Stress Level (1-10)", value=1)
|
498 |
+
sleep_hours = gr.Number(label="Sleep Hours", value=7)
|
499 |
+
exercise_duration = gr.Number(label="Exercise Duration (minutes)", value=0)
|
500 |
+
exercise_intensity = gr.Slider(1, 10, step=1, label="Exercise Intensity (1-10)", value=1)
|
501 |
+
|
502 |
+
with gr.Row():
|
503 |
+
time_hours = gr.Slider(1, 24, step=1, label="Prediction Time (hours)", value=6)
|
504 |
+
|
505 |
+
with gr.Row():
|
506 |
+
calculate_button = gr.Button("Calculate")
|
507 |
+
|
508 |
+
with gr.Column():
|
509 |
+
carb_details_output = gr.Textbox(label="Carbohydrate Details", lines=5)
|
510 |
+
insulin_details_output = gr.Textbox(label="Insulin Calculation Details", lines=5)
|
511 |
+
basal_dose_output = gr.Number(label="Basal Insulin Dose (units/day)")
|
512 |
+
bolus_dose_output = gr.Number(label="Bolus Insulin Dose (units)")
|
513 |
+
glucose_plot_output = gr.Plot(label="Glucose Prediction")
|
514 |
+
|
515 |
+
calculate_button.click(
|
516 |
+
fn=diabetes_dashboard,
|
517 |
+
inputs=[
|
518 |
+
initial_glucose,
|
519 |
+
food_image,
|
520 |
+
stress_level,
|
521 |
+
sleep_hours,
|
522 |
+
time_hours,
|
523 |
+
weight,
|
524 |
+
tdd,
|
525 |
+
target_glucose,
|
526 |
+
exercise_duration,
|
527 |
+
exercise_intensity,
|
528 |
+
portion_size,
|
529 |
+
insulin_type,
|
530 |
+
override_correction_dose,
|
531 |
+
extended_bolus_duration,
|
532 |
+
basal_rates_input,
|
533 |
+
],
|
534 |
+
outputs=[
|
535 |
+
carb_details_output,
|
536 |
+
insulin_details_output,
|
537 |
+
basal_dose_output,
|
538 |
+
bolus_dose_output,
|
539 |
+
glucose_plot_output
|
540 |
+
]
|
541 |
+
)
|
542 |
+
|
543 |
+
if __name__ == "__main__":
|
544 |
+
app.launch(share=True)
|