Anshul3878 commited on
Commit
77a3cc9
·
verified ·
1 Parent(s): c6586a6

Delete app

Browse files
app/Dockerfile DELETED
@@ -1,29 +0,0 @@
1
- # This sets up the container with Python 3.10 installed.
2
- FROM python:3.10-slim
3
-
4
- # This copies everything in your current directory to the /app directory in the container.
5
- COPY . /app
6
-
7
- # This sets the /app directory as the working directory for any RUN, CMD, ENTRYPOINT, or COPY instructions that follow.
8
- WORKDIR /app
9
-
10
- # This runs pip install for all the packages listed in your requirements.txt file.
11
- RUN pip install -r requirements.txt
12
-
13
- # This tells Docker to listen on port 80 at runtime. Port 80 is the standard port for HTTP.
14
- EXPOSE 80
15
-
16
- # This command creates a .streamlit directory in the home directory of the container.
17
- RUN mkdir ~/.streamlit
18
-
19
- # This copies your Streamlit configuration file into the .streamlit directory you just created.
20
- RUN cp config.toml ~/.streamlit/config.toml
21
-
22
- # Similar to the previous step, this copies your Streamlit credentials file into the .streamlit directory.
23
- RUN cp credentials.toml ~/.streamlit/credentials.toml
24
-
25
- # This sets the default command for the container to run the app with Streamlit.
26
- ENTRYPOINT ["streamlit", "run"]
27
-
28
- # This command tells Streamlit to run your app.py script when the container starts.
29
- CMD ["main.py"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app/class_indices.json DELETED
@@ -1 +0,0 @@
1
- {"0": "Apple___Apple_scab", "1": "Apple___Black_rot", "2": "Apple___Cedar_apple_rust", "3": "Apple___healthy", "4": "Blueberry___healthy", "5": "Cherry_(including_sour)___Powdery_mildew", "6": "Cherry_(including_sour)___healthy", "7": "Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot", "8": "Corn_(maize)___Common_rust_", "9": "Corn_(maize)___Northern_Leaf_Blight", "10": "Corn_(maize)___healthy", "11": "Grape___Black_rot", "12": "Grape___Esca_(Black_Measles)", "13": "Grape___Leaf_blight_(Isariopsis_Leaf_Spot)", "14": "Grape___healthy", "15": "Orange___Haunglongbing_(Citrus_greening)", "16": "Peach___Bacterial_spot", "17": "Peach___healthy", "18": "Pepper,_bell___Bacterial_spot", "19": "Pepper,_bell___healthy", "20": "Potato___Early_blight", "21": "Potato___Late_blight", "22": "Potato___healthy", "23": "Raspberry___healthy", "24": "Soybean___healthy", "25": "Squash___Powdery_mildew", "26": "Strawberry___Leaf_scorch", "27": "Strawberry___healthy", "28": "Tomato___Bacterial_spot", "29": "Tomato___Early_blight", "30": "Tomato___Late_blight", "31": "Tomato___Leaf_Mold", "32": "Tomato___Septoria_leaf_spot", "33": "Tomato___Spider_mites Two-spotted_spider_mite", "34": "Tomato___Target_Spot", "35": "Tomato___Tomato_Yellow_Leaf_Curl_Virus", "36": "Tomato___Tomato_mosaic_virus", "37": "Tomato___healthy"}
 
 
app/config.toml DELETED
@@ -1,58 +0,0 @@
1
- [global]
2
- # If True, will show a warning when you run a Streamlit-enabled script via "python my_script.py".
3
- # Default: true
4
- showWarningOnDirectExecution = true
5
-
6
- [logger]
7
- # Level of logging: 'error', 'warning', 'info', or 'debug'.
8
- # Default: 'info'
9
- level = "debug"
10
-
11
-
12
-
13
- [runner]
14
- # Allows you to type a variable or string by itself in a single line of Python code to write it to the app.
15
- # Default: true
16
- magicEnabled = true
17
-
18
-
19
-
20
- [server]
21
- # List of folders that should not be watched for changes. Relative paths will be taken as relative to the current working directory.
22
- # Example: ['/home/user1/env', 'relative/path/to/folder']
23
- # Default: []
24
- folderWatchBlacklist = ['']
25
-
26
- # If false, will attempt to open a browser window on start.
27
- # Default: false unless (1) we are on a Linux box where DISPLAY is unset, or (2) server.liveSave is set.
28
- headless = true
29
-
30
- # Immediately share the app in such a way that enables live monitoring, and post-run analysis.
31
- # Default: false
32
- liveSave = false
33
-
34
- # Automatically rerun script when the file is modified on disk.
35
- # Default: false
36
- runOnSave = false
37
-
38
- # The port where the server will listen for client and browser connections.
39
- # Default: 8501
40
- port = 80
41
-
42
- # Enables support for Cross-Origin Request Sharing, for added security.
43
- # Default: true
44
- enableCORS = false
45
-
46
- [browser]
47
- # Internet address of the server server that the browser should connect to. Can be IP address or DNS name.
48
- # Default: 'localhost'
49
- serverAddress = "0.0.0.0"
50
-
51
- # Whether to send usage statistics to Streamlit.
52
- # Default: true
53
- gatherUsageStats = true
54
-
55
- # Port that the browser should use to connect to the server when in liveSave mode.
56
- # Default: whatever value is set in server.port.
57
- serverPort = 80
58
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app/credentials.toml DELETED
@@ -1,3 +0,0 @@
1
- [general]
2
- email=""
3
-
 
 
 
 
app/main.py DELETED
@@ -1,60 +0,0 @@
1
- import os
2
- import json
3
- from PIL import Image
4
-
5
- import numpy as np
6
- import tensorflow as tf
7
- import streamlit as st
8
-
9
-
10
- working_dir = os.path.dirname(os.path.abspath(__file__))
11
- model_path = f"{working_dir}/trained_model/plant_disease_prediction_model.h5"
12
- # Load the pre-trained model
13
- model = tf.keras.models.load_model(model_path)
14
-
15
- # loading the class names
16
- class_indices = json.load(open(f"{working_dir}/class_indices.json"))
17
-
18
-
19
- # Function to Load and Preprocess the Image using Pillow
20
- def load_and_preprocess_image(image_path, target_size=(224, 224)):
21
- # Load the image
22
- img = Image.open(image_path)
23
- # Resize the image
24
- img = img.resize(target_size)
25
- # Convert the image to a numpy array
26
- img_array = np.array(img)
27
- # Add batch dimension
28
- img_array = np.expand_dims(img_array, axis=0)
29
- # Scale the image values to [0, 1]
30
- img_array = img_array.astype('float32') / 255.
31
- return img_array
32
-
33
-
34
- # Function to Predict the Class of an Image
35
- def predict_image_class(model, image_path, class_indices):
36
- preprocessed_img = load_and_preprocess_image(image_path)
37
- predictions = model.predict(preprocessed_img)
38
- predicted_class_index = np.argmax(predictions, axis=1)[0]
39
- predicted_class_name = class_indices[str(predicted_class_index)]
40
- return predicted_class_name
41
-
42
-
43
- # Streamlit App
44
- st.title('Plant Disease Classifier')
45
-
46
- uploaded_image = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
47
-
48
- if uploaded_image is not None:
49
- image = Image.open(uploaded_image)
50
- col1, col2 = st.columns(2)
51
-
52
- with col1:
53
- resized_img = image.resize((150, 150))
54
- st.image(resized_img)
55
-
56
- with col2:
57
- if st.button('Classify'):
58
- # Preprocess the uploaded image and predict the class
59
- prediction = predict_image_class(model, uploaded_image, class_indices)
60
- st.success(f'Prediction: {str(prediction)}')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app/requirements.txt DELETED
@@ -1,3 +0,0 @@
1
- numpy==1.26.3
2
- streamlit==1.30.0
3
- tensorflow==2.15.0.post1
 
 
 
 
app/trained_model/trained_model_link.txt DELETED
@@ -1 +0,0 @@
1
- trained plant disease prediction model link: https://drive.google.com/file/d/1rKh-IElSdHTqax7XdfSdZTn-r8T_qWPf/view?usp=drive_link