Spaces:
Sleeping
Sleeping
Commit
·
48c38d2
1
Parent(s):
3090c68
first commit
Browse files- app.py.py +142 -0
- requirements.txt +14 -0
app.py.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
import os
|
3 |
+
import streamlit as st
|
4 |
+
from PyPDF2 import PdfFileReader
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.chains.question_answering import load_qa_chain
|
9 |
+
from langchain.llms import OpenAI as LLMSOpenAI
|
10 |
+
from langchain.llms import AzureOpenAI
|
11 |
+
from langchain.callbacks import get_openai_callback
|
12 |
+
from langchain.chat_models import ChatOpenAI
|
13 |
+
from docx import Document
|
14 |
+
from openpyxl import load_workbook
|
15 |
+
import pdfplumber
|
16 |
+
|
17 |
+
|
18 |
+
def extract_text_from_pdf(pdf_file):
|
19 |
+
with pdfplumber.open(pdf_file) as pdf:
|
20 |
+
text = ""
|
21 |
+
for page in pdf.pages:
|
22 |
+
text += page.extract_text()
|
23 |
+
return text
|
24 |
+
|
25 |
+
|
26 |
+
def extract_text_from_docx(docx_file):
|
27 |
+
doc = Document(docx_file)
|
28 |
+
paragraphs = [paragraph.text for paragraph in doc.paragraphs]
|
29 |
+
return "\n".join(paragraphs)
|
30 |
+
|
31 |
+
|
32 |
+
def extract_text_from_excel(excel_file):
|
33 |
+
workbook = load_workbook(excel_file)
|
34 |
+
text = ""
|
35 |
+
for sheet in workbook.sheetnames:
|
36 |
+
worksheet = workbook[sheet]
|
37 |
+
for row in worksheet.iter_rows():
|
38 |
+
for cell in row:
|
39 |
+
if cell.value:
|
40 |
+
text += str(cell.value) + "\n"
|
41 |
+
return text
|
42 |
+
|
43 |
+
|
44 |
+
def split_text_into_chunks(text):
|
45 |
+
text_splitter = CharacterTextSplitter(
|
46 |
+
separator="\n",
|
47 |
+
chunk_size=1000,
|
48 |
+
chunk_overlap=200,
|
49 |
+
length_function=len
|
50 |
+
)
|
51 |
+
return text_splitter.split_text(text)
|
52 |
+
|
53 |
+
|
54 |
+
def create_knowledge_base(chunks, api_key=None):
|
55 |
+
embeddings = OpenAIEmbeddings(openai_api_key=api_key)
|
56 |
+
knowledge_base = FAISS.from_texts(chunks, embeddings)
|
57 |
+
return knowledge_base
|
58 |
+
|
59 |
+
|
60 |
+
def answer_question(question, knowledge_base, model):
|
61 |
+
docs = knowledge_base.similarity_search(question)
|
62 |
+
llm = model(model_name="gpt-3.5-turbo")
|
63 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
64 |
+
with get_openai_callback() as cb:
|
65 |
+
response = chain.run(input_documents=docs, question=question)
|
66 |
+
return response
|
67 |
+
|
68 |
+
|
69 |
+
def save_api_key(api_key):
|
70 |
+
st.session_state.api_key = api_key
|
71 |
+
|
72 |
+
|
73 |
+
def main():
|
74 |
+
load_dotenv()
|
75 |
+
st.set_page_config(page_title="Ask Your PDF", layout="wide")
|
76 |
+
|
77 |
+
# Sidebar
|
78 |
+
st.sidebar.title("Settings")
|
79 |
+
|
80 |
+
# API Key input
|
81 |
+
st.sidebar.subheader("API Key")
|
82 |
+
api_key = st.sidebar.text_input("Insert your API Key", type="password")
|
83 |
+
st.sidebar.button("Save API Key", on_click=save_api_key, args=(api_key,))
|
84 |
+
|
85 |
+
model_type = st.sidebar.selectbox("Select Language Model", ["OpenAI", "AzureOpenAI"])
|
86 |
+
if model_type == "AzureOpenAI":
|
87 |
+
model = AzureOpenAI
|
88 |
+
else:
|
89 |
+
model = ChatOpenAI
|
90 |
+
|
91 |
+
chunk_size = st.sidebar.slider("Chunk Size", min_value=500, max_value=2000, value=1000, step=100)
|
92 |
+
chunk_overlap = st.sidebar.slider("Chunk Overlap", min_value=100, max_value=500, value=200, step=50)
|
93 |
+
show_content = st.sidebar.checkbox("Show Document Content")
|
94 |
+
show_answers = st.sidebar.checkbox("Show Previous Answers")
|
95 |
+
|
96 |
+
# Main content
|
97 |
+
st.title("Ask Your Document 💭")
|
98 |
+
file_format = st.selectbox("Select File Format", ["PDF", "docx", "xlsx"])
|
99 |
+
document = st.file_uploader("Upload Document", type=[file_format.lower()])
|
100 |
+
|
101 |
+
if not hasattr(st.session_state, "api_key") or not st.session_state.api_key:
|
102 |
+
st.warning("You need to insert your API Key first.")
|
103 |
+
elif document is not None:
|
104 |
+
if file_format == "PDF":
|
105 |
+
text = extract_text_from_pdf(document)
|
106 |
+
elif file_format == "docx":
|
107 |
+
text = extract_text_from_docx(document)
|
108 |
+
elif file_format == "xlsx":
|
109 |
+
text = extract_text_from_excel(document)
|
110 |
+
else:
|
111 |
+
text = ""
|
112 |
+
|
113 |
+
if show_content:
|
114 |
+
st.subheader("Document Text:")
|
115 |
+
st.text_area("Content", value=text, height=300)
|
116 |
+
|
117 |
+
chunks = split_text_into_chunks(text)
|
118 |
+
knowledge_base = create_knowledge_base(chunks, api_key=st.session_state.api_key)
|
119 |
+
|
120 |
+
user_question = st.text_input("Ask a question based on the document content:")
|
121 |
+
|
122 |
+
if user_question:
|
123 |
+
response = answer_question(user_question, knowledge_base, model)
|
124 |
+
st.subheader("Answer:")
|
125 |
+
st.write(response)
|
126 |
+
|
127 |
+
# Store and display previous answers
|
128 |
+
if "answers" not in st.session_state:
|
129 |
+
st.session_state.answers = []
|
130 |
+
st.session_state.answers.append((user_question, response))
|
131 |
+
|
132 |
+
if show_answers:
|
133 |
+
st.subheader("Previous Answers:")
|
134 |
+
for question, answer in st.session_state.answers:
|
135 |
+
st.write(f"Question: {question}")
|
136 |
+
st.write(f"Answer: {answer}")
|
137 |
+
st.write("------")
|
138 |
+
|
139 |
+
|
140 |
+
if __name__ == '__main__':
|
141 |
+
main()
|
142 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dotenv
|
2 |
+
os
|
3 |
+
streamlit
|
4 |
+
PyPDF2
|
5 |
+
langchain.text_splitter
|
6 |
+
langchain.embeddings.openai
|
7 |
+
langchain.vectorstores
|
8 |
+
langchain.chains.question_answering
|
9 |
+
langchain.llms
|
10 |
+
langchain.callbacks
|
11 |
+
langchain.chat_models
|
12 |
+
docx
|
13 |
+
openpyxl
|
14 |
+
pdfplumber
|