import gradio as gr import copy from llama_cpp import Llama from huggingface_hub import hf_hub_download import chromadb from datasets import load_dataset from sentence_transformers import SentenceTransformer # Initialize the Llama model llm = Llama( # model_path=hf_hub_download( # repo_id="microsoft/Phi-3-mini-4k-instruct-gguf", # filename="Phi-3-mini-4k-instruct-q4.gguf", # ), model_path=hf_hub_download( repo_id="Ankitajadhav/Phi-3-mini-4k-instruct-q4.gguf", filename="Phi-3-mini-4k-instruct-q4.gguf", ), n_ctx=2048, n_gpu_layers=50, # Adjust based on your VRAM ) # Initialize ChromaDB Vector Store class VectorStore: def __init__(self, collection_name): self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') self.chroma_client = chromadb.Client() self.collection = self.chroma_client.create_collection(name=collection_name) # def populate_vectors(self, texts): # embeddings = self.embedding_model.encode(texts, batch_size=32).tolist() # for text, embedding in zip(texts, embeddings, ids): # self.collection.add(embeddings=[embedding], documents=[text], ids=[doc_id]) # Method to populate the vector store with embeddings from a dataset def populate_vectors(self, dataset): # Select the text columns to concatenate # title = dataset['train']['title_cleaned'][:1000] # Limiting to 100 examples for the demo recipe = dataset['train']['recipe_new'][:1000] allergy = dataset['train']['allergy_type'][:1000] ingredients = dataset['train']['ingredients_alternatives'][:1000] # Concatenate the text from both columns texts = [f"{rep} {ingr} {alle}" for rep, ingr,alle in zip(recipe, ingredients,allergy)] for i, item in enumerate(texts): embeddings = self.embedding_model.encode(item).tolist() self.collection.add(embeddings=[embeddings], documents=[item], ids=[str(i)]) def search_context(self, query, n_results=1): query_embedding = self.embedding_model.encode([query]).tolist() results = self.collection.query(query_embeddings=query_embedding, n_results=n_results) return results['documents'] # Example initialization (assuming you've already populated the vector store) dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full') vector_store = VectorStore("embedding_vector") vector_store.populate_vectors(dataset) def format_recipe(input_string): # Clean up the input cleaned_text = input_string.strip("[]'").replace('\\n', '\n') # Split the text into lines lines = cleaned_text.split('\n') # Initialize sections title = lines[0] ingredients = [] instructions = [] substitutions = [] # Extract ingredients and instructions in_instructions = False for line in lines[1:]: if line.startswith("Instructions:"): in_instructions = True continue if in_instructions: if line.strip(): # Check for non-empty lines instructions.append(line.strip()) else: if line.strip(): # Check for non-empty lines ingredients.append(line.strip()) # Gather substitutions from the last few lines for line in lines: if ':' in line: substitutions.append(line.strip()) # Format output formatted_recipe = f"## {title}\n\n### Ingredients:\n" formatted_recipe += '\n'.join(f"- {item}" for item in ingredients) + "\n\n" formatted_recipe += "### Instructions:\n" + '\n'.join(f"{i + 1}. {line}" for i, line in enumerate(instructions)) + "\n\n" if substitutions: formatted_recipe += "### Substitutions:\n" + '\n'.join(f"- **{line.split(':')[0].strip()}**: {line.split(':')[1].strip()}" for line in substitutions) + "\n" return formatted_recipe # print(formatted_recipe) def generate_text( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Retrieve context from vector store context_results = vector_store.search_context(message, n_results=1) context = context_results[0] if context_results else "" input_prompt = f"[INST] <>\n{system_message}\n<>\n\n {context}\n" for interaction in history: input_prompt += f"{interaction[0]} [/INST] {interaction[1]} [INST] " input_prompt += f"{message} [/INST] " print("Input prompt:", input_prompt) # Debugging output temp = "" output = llm( input_prompt, temperature=temperature, top_p=top_p, top_k=40, repeat_penalty=1.1, max_tokens=max_tokens, stop=["", " \n", "ASSISTANT:", "USER:", "SYSTEM:"], stream=True, ) for out in output: temp += format_recipe(out["choices"][0]["text"]) yield temp # Define the Gradio interface demo = gr.ChatInterface( generate_text, title="llama-cpp-python on GPU with ChromaDB", description="Running LLM with context retrieval from ChromaDB", examples=[ ["I have leftover rice, what can I make out of it?"], ["Can I make lunch for two people with this?"], ], cache_examples=False, retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear", additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()