Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,133 +1,96 @@
|
|
1 |
-
import shutil
|
2 |
import os
|
3 |
-
__import__('pysqlite3')
|
4 |
-
import sys
|
5 |
-
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
6 |
-
from sentence_transformers import SentenceTransformer
|
7 |
-
import chromadb
|
8 |
-
from datasets import load_dataset
|
9 |
import gradio as gr
|
10 |
-
import
|
11 |
-
from
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
torch.random.manual_seed(0)
|
18 |
-
model_name = "microsoft/Phi-3-mini-4k-instruct-gguf"
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
)
|
26 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
-
|
28 |
-
# Function to clear the cache
|
29 |
-
def clear_cache(model_name):
|
30 |
-
cache_dir = os.path.expanduser(f'~/.cache/torch/sentence_transformers/{model_name.replace("/", "_")}')
|
31 |
-
if os.path.exists(cache_dir):
|
32 |
-
shutil.rmtree(cache_dir)
|
33 |
-
print(f"Cleared cache directory: {cache_dir}")
|
34 |
-
else:
|
35 |
-
print(f"No cache directory found for: {cache_dir}")
|
36 |
|
37 |
-
#
|
38 |
class VectorStore:
|
39 |
def __init__(self, collection_name):
|
40 |
-
|
41 |
-
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
|
42 |
-
except Exception as e:
|
43 |
-
print(f"Error loading model: {e}")
|
44 |
-
raise
|
45 |
self.chroma_client = chromadb.Client()
|
46 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
47 |
|
48 |
-
def populate_vectors(self,
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
texts = []
|
53 |
-
i = 0
|
54 |
-
for example in dataset:
|
55 |
-
title = example['title_cleaned']
|
56 |
-
recipe = example['recipe_new']
|
57 |
-
meal_type = example['meal_type']
|
58 |
-
allergy = example['allergy_type']
|
59 |
-
ingredients_alternative = example['ingredients_alternatives']
|
60 |
-
text = f"{title} {recipe} {meal_type} {allergy} {ingredients_alternative}"
|
61 |
-
texts.append(text)
|
62 |
-
if (i + 1) % batch_size == 0:
|
63 |
-
self._process_batch(texts, i)
|
64 |
-
texts = []
|
65 |
-
i += 1
|
66 |
-
if texts:
|
67 |
-
self._process_batch(texts, i)
|
68 |
-
|
69 |
-
def _process_batch(self, texts, batch_start_idx):
|
70 |
-
embeddings = self.embedding_model.encode(texts, batch_size=len(texts)).tolist()
|
71 |
-
for j, embedding in enumerate(embeddings):
|
72 |
-
self.collection.add(embeddings=[embedding], documents=[texts[j]], ids=[str(batch_start_idx + j)])
|
73 |
|
74 |
def search_context(self, query, n_results=1):
|
75 |
-
|
76 |
-
|
|
|
77 |
|
|
|
78 |
vector_store = VectorStore("embedding_vector")
|
79 |
-
vector_store.populate_vectors(dataset=None)
|
80 |
-
|
81 |
-
def fine_tune_model():
|
82 |
-
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train')
|
83 |
-
dataset = dataset.select(range(1500))
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
args=training_args,
|
107 |
-
train_dataset=tokenized_datasets,
|
108 |
-
)
|
109 |
-
|
110 |
-
trainer.train()
|
111 |
-
|
112 |
-
fine_tune_model()
|
113 |
-
|
114 |
-
conversation_history = []
|
115 |
-
|
116 |
-
def chatbot_response(user_input):
|
117 |
-
global conversation_history
|
118 |
-
results = vector_store.search_context(user_input, n_results=1)
|
119 |
-
context = results['documents'][0] if results['documents'] else ""
|
120 |
-
conversation_history.append(f"User: {user_input}\nContext: {context[:150]}\nBot:")
|
121 |
-
inputs = tokenizer("\n".join(conversation_history), return_tensors="pt")
|
122 |
-
outputs = model.generate(**inputs, max_length=150, do_sample=True, temperature=0.7)
|
123 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
124 |
-
conversation_history.append(response)
|
125 |
-
return response
|
126 |
-
|
127 |
-
def chat(user_input):
|
128 |
-
response = chatbot_response(user_input)
|
129 |
-
return response
|
130 |
-
|
131 |
-
css = ".gradio-container {background: url(https://upload.wikimedia.org/wikipedia/commons/f/f5/Spring_Kitchen_Line-Up_%28Unsplash%29.jpg)}"
|
132 |
-
iface = gr.Interface(fn=chat, inputs="text", outputs="text", css=css)
|
133 |
-
iface.launch()
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
import copy
|
4 |
+
from llama_cpp import Llama
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import chromadb
|
7 |
+
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Initialize the Llama model
|
10 |
+
llm = Llama(
|
11 |
+
model_path=hf_hub_download(
|
12 |
+
repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
|
13 |
+
filename="Phi-3-mini-4k-instruct-q4.gguf",
|
14 |
+
),
|
15 |
+
n_ctx=2048,
|
16 |
+
n_gpu_layers=50, # Adjust based on your VRAM
|
17 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Initialize ChromaDB Vector Store
|
20 |
class VectorStore:
|
21 |
def __init__(self, collection_name):
|
22 |
+
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
|
|
|
|
|
|
|
|
|
23 |
self.chroma_client = chromadb.Client()
|
24 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
25 |
|
26 |
+
def populate_vectors(self, texts, ids):
|
27 |
+
embeddings = self.embedding_model.encode(texts, batch_size=32).tolist()
|
28 |
+
for text, embedding, doc_id in zip(texts, embeddings, ids):
|
29 |
+
self.collection.add(embeddings=[embedding], documents=[text], ids=[doc_id])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def search_context(self, query, n_results=1):
|
32 |
+
query_embedding = self.embedding_model.encode([query]).tolist()
|
33 |
+
results = self.collection.query(query_embeddings=query_embedding, n_results=n_results)
|
34 |
+
return results['documents']
|
35 |
|
36 |
+
# Example initialization (assuming you've already populated the vector store)
|
37 |
vector_store = VectorStore("embedding_vector")
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Populate with your data if not already done
|
40 |
+
# vector_store.populate_vectors(your_texts, your_ids)
|
41 |
+
|
42 |
+
def generate_text(
|
43 |
+
message,
|
44 |
+
history: list[tuple[str, str]],
|
45 |
+
system_message,
|
46 |
+
max_tokens,
|
47 |
+
temperature,
|
48 |
+
top_p,
|
49 |
+
):
|
50 |
+
# Retrieve context from vector store
|
51 |
+
context_results = vector_store.search_context(message, n_results=1)
|
52 |
+
context = context_results[0] if context_results else ""
|
53 |
+
|
54 |
+
input_prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n {context}\n"
|
55 |
+
for interaction in history:
|
56 |
+
input_prompt += f"{interaction[0]} [/INST] {interaction[1]} </s><s> [INST] "
|
57 |
+
input_prompt += f"{message} [/INST] "
|
58 |
+
|
59 |
+
temp = ""
|
60 |
+
output = llm(
|
61 |
+
input_prompt,
|
62 |
+
temperature=temperature,
|
63 |
+
top_p=top_p,
|
64 |
+
top_k=40,
|
65 |
+
repeat_penalty=1.1,
|
66 |
+
max_tokens=max_tokens,
|
67 |
+
stop=["", " \n", "ASSISTANT:", "USER:", "SYSTEM:"],
|
68 |
+
stream=True,
|
69 |
)
|
70 |
+
for out in output:
|
71 |
+
temp += out["choices"][0]["text"]
|
72 |
+
yield temp
|
73 |
+
|
74 |
+
# Define the Gradio interface
|
75 |
+
demo = gr.ChatInterface(
|
76 |
+
generate_text,
|
77 |
+
title="llama-cpp-python on GPU with ChromaDB",
|
78 |
+
description="Running LLM with context retrieval from ChromaDB",
|
79 |
+
examples=[
|
80 |
+
["I have leftover rice, what can I make out of it?"],
|
81 |
+
["Can I make lunch for two people with this?"],
|
82 |
+
],
|
83 |
+
cache_examples=False,
|
84 |
+
retry_btn=None,
|
85 |
+
undo_btn="Delete Previous",
|
86 |
+
clear_btn="Clear",
|
87 |
+
additional_inputs=[
|
88 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
89 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
90 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
91 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
92 |
+
],
|
93 |
+
)
|
94 |
|
95 |
+
if __name__ == "__main__":
|
96 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|