bias-test-gpt-pairs / mgr_sentences.py
RKocielnik's picture
update sentence manager to new huggingface_hub
af9829f verified
raw
history blame
6.45 kB
import gradio as gr
import os
import re
import pandas as pd
import numpy as np
import glob
from pathlib import Path
import huggingface_hub
print("hfh", huggingface_hub.__version__)
from huggingface_hub import hf_hub_download, upload_file, delete_file, snapshot_download, list_repo_files, dataset_info
DATASET_REPO_ID = "AnimaLab/bias-test-gpt-sentences"
DATASET_REPO_URL = f"https://huggingface.co/{DATASET_REPO_ID}"
HF_DATA_DIRNAME = "data"
LOCAL_DATA_DIRNAME = "data"
LOCAL_SAVE_DIRNAME = "save"
ds_write_token = os.environ.get("DS_WRITE_TOKEN")
HF_TOKEN = os.environ.get("HF_TOKEN")
print("ds_write_token:", ds_write_token!=None)
print("hf_token:", HF_TOKEN!=None)
print("hfh_verssion", huggingface_hub.__version__)
def retrieveAllSaved():
global DATASET_REPO_ID
#listing the files - https://huggingface.co/docs/huggingface_hub/v0.8.1/en/package_reference/hf_api
repo_files = list_repo_files(repo_id=DATASET_REPO_ID, repo_type="dataset")
#print("Repo files:" + str(repo_files)
return repo_files
def store_group_sentences(filename: str, df):
DATA_FILENAME_1 = f"{filename}"
LOCAL_PATH_FILE = os.path.join(LOCAL_SAVE_DIRNAME, DATA_FILENAME_1)
DATA_FILE_1 = os.path.join(HF_DATA_DIRNAME, DATA_FILENAME_1)
print(f"Trying to save to: {DATA_FILE_1}")
os.makedirs(os.path.dirname(LOCAL_PATH_FILE), exist_ok=True)
df.to_csv(LOCAL_PATH_FILE, index=False)
commit_url = upload_file(
path_or_fileobj=LOCAL_PATH_FILE,
path_in_repo=DATA_FILE_1,
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=ds_write_token,
)
print(commit_url)
def saveSentences(sentences_df):
for grp_term in list(sentences_df['org_grp_term'].unique()):
print(f"Retrieving sentences for group: {grp_term}")
msg, grp_saved_df, filename = getSavedSentences(grp_term)
print(f"Num for group: {grp_term} -> {grp_saved_df.shape[0]}")
add_df = sentences_df[sentences_df['org_grp_term'] == grp_term]
print(f"Adding {add_df.shape[0]} sentences...")
new_grp_df = pd.concat([grp_saved_df, add_df], ignore_index=True)
new_grp_df = new_grp_df.drop_duplicates(subset = "sentence")
print(f"Org size: {grp_saved_df.shape[0]}, Mrg size: {new_grp_df.shape[0]}")
store_group_sentences(filename, new_grp_df)
def list_folders_sorted_by_date(path):
# Convert string path to a Path object
directory = Path(path)
# Get all folders in the given directory
folders = [f for f in directory.iterdir() if f.is_dir()]
# Sort folders by modification time, most recent first
sorted_folders = sorted(folders, key=lambda x: x.stat().st_mtime, reverse=True)
# Return folder names
return [folder.name for folder in sorted_folders]
# https://huggingface.co/spaces/elonmuskceo/persistent-data/blob/main/app.py
def get_sentence_csv(file_path: str):
file_path = os.path.join(HF_DATA_DIRNAME, file_path)
print(f"File path: {file_path}")
try:
hf_hub_download(
force_download=True, # to get updates of the dataset
repo_type="dataset",
repo_id=DATASET_REPO_ID,
filename=file_path,
cache_dir=LOCAL_DATA_DIRNAME,
force_filename=os.path.basename(file_path)
)
except Exception as e:
# file not found
print(f"file not found, probably: {e}")
ds_local_path = os.path.join(LOCAL_DATA_DIRNAME,
"datasets--AnimaLab--bias-test-gpt-sentences",
"snapshots")
folders_sorted = list_folders_sorted_by_date(ds_local_path)
print("---SENTENCE FOLDERS---")
print(os.path.join(ds_local_path, folders_sorted[0]))
files=glob.glob(os.path.join(ds_local_path, folders_sorted[0], file_path), recursive=True)
print("Files glob: "+', '.join(files))
df = pd.read_csv(os.path.join(ds_local_path, folders_sorted[0], file_path), encoding='UTF8')
#files=glob.glob(f"./{LOCAL_DATA_DIRNAME}/", recursive=True)
#print("Files glob: "+', '.join(files))
#print("Save file:" + str(os.path.basename(file_path)))
#df = pd.read_csv(os.path.join(LOCAL_DATA_DIRNAME, os.path.basename(file_path)), encoding='UTF8')
return df
def getSavedSentences(grp): #, gi, total_grp_len, progress):
filename = f"{grp.replace(' ','-')}.csv"
sentence_df = pd.DataFrame()
try:
text = f"Loading sentences: {filename}\n"
sentence_df = get_sentence_csv(filename)
#progress(gi/total_grp_len, desc=f"{sentence_df[0]}")
except Exception as e:
text = f"Error, no saved generations for {filename}"
#raise gr.Error(f"Cannot load sentences: {filename}!")
return text, sentence_df, filename
def deleteBias(filepath: str):
commit_url = delete_file(
path_in_repo=filepath,
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=ds_write_token,
)
return f"Deleted {filepath} -> {commit_url}"
def _testSentenceRetrieval(grp_list, att_list, use_paper_sentences):
test_sentences = []
print(f"Att list: {att_list}")
att_list_dash = [t.replace(' ','-') for t in att_list]
att_list.extend(att_list_dash)
att_list_nospace = [t.replace(' ','') for t in att_list]
att_list.extend(att_list_nospace)
att_list = list(set(att_list))
print(f"Att list with dash: {att_list}")
for gi, g_term in enumerate(grp_list):
_, sentence_df, _ = getSavedSentences(g_term)
# only take from paper & gpt3.5
print(f"Before filter: {sentence_df.shape[0]}")
if use_paper_sentences == True:
if 'type' in list(sentence_df.columns):
gen_models = ["gpt-3.5", "gpt-3.5-turbo", "gpt-4"]
sentence_df = sentence_df.query("type=='paper' and gen_model in @gen_models")
print(f"After filter: {sentence_df.shape[0]}")
else:
sentence_df = pd.DataFrame(columns=["Group term","Attribute term","Test sentence"])
if sentence_df.shape[0] > 0:
sentence_df = sentence_df[["Group term","Attribute term","Test sentence"]]
sel = sentence_df[sentence_df['Attribute term'].isin(att_list)].values
if len(sel) > 0:
for gt,at,s in sel:
test_sentences.append([s,gt.replace("-"," "),at.replace("-"," ")])
return test_sentences
if __name__ == '__main__':
print("ds_write_token:", ds_write_token)
print("hf_token:", HF_TOKEN!=None)
print("hfh_verssion", huggingface_hub.__version__)
sentences = _testSentenceRetrieval(["husband"], ["hairdresser", "steel worker"], use_paper_sentences=True)
print(sentences)