Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import numpy as np
|
|
| 3 |
import re
|
| 4 |
from datetime import datetime, timedelta
|
| 5 |
import difflib
|
| 6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
import torch
|
| 8 |
import yfinance as yf
|
| 9 |
from functools import lru_cache
|
|
@@ -36,7 +36,7 @@ def parse_period(query):
|
|
| 36 |
return timedelta(weeks=num)
|
| 37 |
elif unit == 'day':
|
| 38 |
return timedelta(days=num)
|
| 39 |
-
return timedelta(days=365)
|
| 40 |
|
| 41 |
def find_closest_symbol(input_symbol):
|
| 42 |
input_symbol = input_symbol.upper()
|
|
@@ -55,21 +55,16 @@ def calculate_growth_rate(start_date, end_date, symbol):
|
|
| 55 |
if years == 0:
|
| 56 |
return 0
|
| 57 |
cagr = (1 + total_return) ** (1 / years) - 1
|
| 58 |
-
return cagr * 100
|
| 59 |
|
| 60 |
def calculate_investment(principal, years, annual_return=0.07):
|
| 61 |
return principal * (1 + annual_return) ** years
|
| 62 |
|
| 63 |
-
# Load SmolLM-135M-Instruct
|
| 64 |
model_name = "HuggingFaceTB/SmolLM-135M-Instruct"
|
| 65 |
-
quantization_config = BitsAndBytesConfig(
|
| 66 |
-
load_in_8bit=True, # Switch to 8-bit for faster inference
|
| 67 |
-
bnb_8bit_compute_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 68 |
-
)
|
| 69 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 70 |
model = AutoModelForCausalLM.from_pretrained(
|
| 71 |
model_name,
|
| 72 |
-
quantization_config=quantization_config,
|
| 73 |
device_map="auto",
|
| 74 |
)
|
| 75 |
|
|
@@ -78,7 +73,6 @@ def generate_response(user_query, enable_thinking=False):
|
|
| 78 |
stock_keywords = ['stock', 'growth', 'investment', 'price', 'return', 'cagr']
|
| 79 |
is_stock_query = any(keyword in user_query.lower() for keyword in stock_keywords)
|
| 80 |
summary = ""
|
| 81 |
-
|
| 82 |
if is_stock_query:
|
| 83 |
# Parse query for symbol and period
|
| 84 |
symbol_match = re.search(r'\b([A-Z]{1,5})\b', user_query.upper())
|
|
@@ -87,22 +81,19 @@ def generate_response(user_query, enable_thinking=False):
|
|
| 87 |
period = parse_period(user_query)
|
| 88 |
end_date = datetime.now()
|
| 89 |
start_date = end_date - period
|
| 90 |
-
|
| 91 |
# Calculate growth rate
|
| 92 |
growth_rate = calculate_growth_rate(start_date, end_date, symbol)
|
| 93 |
if growth_rate is not None:
|
| 94 |
summary = f"The CAGR for {symbol} over the period is {growth_rate:.2f}%."
|
| 95 |
else:
|
| 96 |
summary = f"No data available for {symbol} in the specified period."
|
| 97 |
-
|
| 98 |
# Handle investment projection
|
| 99 |
investment_match = re.search(r'\$(\d+)', user_query)
|
| 100 |
if investment_match:
|
| 101 |
principal = float(investment_match.group(1))
|
| 102 |
years = period.days / 365.25
|
| 103 |
projected = calculate_investment(principal, years)
|
| 104 |
-
summary += f" Projecting ${principal} at 7% return over {years
|
| 105 |
-
|
| 106 |
# Prepare prompt
|
| 107 |
system_prompt = (
|
| 108 |
"You are FinChat, a knowledgeable financial advisor. Always respond in a friendly, professional manner. "
|
|
@@ -112,44 +103,37 @@ def generate_response(user_query, enable_thinking=False):
|
|
| 112 |
)
|
| 113 |
messages = [
|
| 114 |
{"role": "system", "content": system_prompt},
|
| 115 |
-
{"role": "user", "content": f"{summary} {user_query}" if summary else user_query}
|
| 116 |
]
|
| 117 |
-
|
| 118 |
text = tokenizer.apply_chat_template(
|
| 119 |
messages,
|
| 120 |
tokenize=False,
|
| 121 |
add_generation_prompt=True,
|
| 122 |
enable_thinking=enable_thinking
|
| 123 |
)
|
| 124 |
-
|
| 125 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 126 |
generated_ids = model.generate(
|
| 127 |
**model_inputs,
|
| 128 |
-
max_new_tokens=30,
|
| 129 |
temperature=0.6,
|
| 130 |
top_p=0.95,
|
| 131 |
repetition_penalty=1.0,
|
| 132 |
do_sample=False,
|
| 133 |
-
early_stopping=True
|
| 134 |
)
|
| 135 |
-
|
| 136 |
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):]
|
| 137 |
response = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 138 |
return response.strip()
|
| 139 |
-
|
| 140 |
# Gradio interface
|
| 141 |
def chat(user_input, history):
|
| 142 |
response = generate_response(user_input)
|
| 143 |
history.append((user_input, response))
|
| 144 |
return history, ""
|
| 145 |
-
|
| 146 |
with gr.Blocks() as demo:
|
| 147 |
gr.Markdown("# FinChat: AI-Powered Financial Advisor")
|
| 148 |
chatbot = gr.Chatbot()
|
| 149 |
msg = gr.Textbox(placeholder="Ask about stocks, investments, etc.")
|
| 150 |
clear = gr.Button("Clear")
|
| 151 |
-
|
| 152 |
msg.submit(chat, [msg, chatbot], [chatbot, msg])
|
| 153 |
clear.click(lambda: None, None, chatbot, queue=False)
|
| 154 |
-
|
| 155 |
demo.launch()
|
|
|
|
| 3 |
import re
|
| 4 |
from datetime import datetime, timedelta
|
| 5 |
import difflib
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
import torch
|
| 8 |
import yfinance as yf
|
| 9 |
from functools import lru_cache
|
|
|
|
| 36 |
return timedelta(weeks=num)
|
| 37 |
elif unit == 'day':
|
| 38 |
return timedelta(days=num)
|
| 39 |
+
return timedelta(days=365) # Default to 1 year
|
| 40 |
|
| 41 |
def find_closest_symbol(input_symbol):
|
| 42 |
input_symbol = input_symbol.upper()
|
|
|
|
| 55 |
if years == 0:
|
| 56 |
return 0
|
| 57 |
cagr = (1 + total_return) ** (1 / years) - 1
|
| 58 |
+
return cagr * 100 # As percentage
|
| 59 |
|
| 60 |
def calculate_investment(principal, years, annual_return=0.07):
|
| 61 |
return principal * (1 + annual_return) ** years
|
| 62 |
|
| 63 |
+
# Load SmolLM-135M-Instruct without quantization
|
| 64 |
model_name = "HuggingFaceTB/SmolLM-135M-Instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 66 |
model = AutoModelForCausalLM.from_pretrained(
|
| 67 |
model_name,
|
|
|
|
| 68 |
device_map="auto",
|
| 69 |
)
|
| 70 |
|
|
|
|
| 73 |
stock_keywords = ['stock', 'growth', 'investment', 'price', 'return', 'cagr']
|
| 74 |
is_stock_query = any(keyword in user_query.lower() for keyword in stock_keywords)
|
| 75 |
summary = ""
|
|
|
|
| 76 |
if is_stock_query:
|
| 77 |
# Parse query for symbol and period
|
| 78 |
symbol_match = re.search(r'\b([A-Z]{1,5})\b', user_query.upper())
|
|
|
|
| 81 |
period = parse_period(user_query)
|
| 82 |
end_date = datetime.now()
|
| 83 |
start_date = end_date - period
|
|
|
|
| 84 |
# Calculate growth rate
|
| 85 |
growth_rate = calculate_growth_rate(start_date, end_date, symbol)
|
| 86 |
if growth_rate is not None:
|
| 87 |
summary = f"The CAGR for {symbol} over the period is {growth_rate:.2f}%."
|
| 88 |
else:
|
| 89 |
summary = f"No data available for {symbol} in the specified period."
|
|
|
|
| 90 |
# Handle investment projection
|
| 91 |
investment_match = re.search(r'\$(\d+)', user_query)
|
| 92 |
if investment_match:
|
| 93 |
principal = float(investment_match.group(1))
|
| 94 |
years = period.days / 365.25
|
| 95 |
projected = calculate_investment(principal, years)
|
| 96 |
+
summary += f" Projecting $ {principal} at 7% return over {years: .1f} years: $ {projected: .2f}."
|
|
|
|
| 97 |
# Prepare prompt
|
| 98 |
system_prompt = (
|
| 99 |
"You are FinChat, a knowledgeable financial advisor. Always respond in a friendly, professional manner. "
|
|
|
|
| 103 |
)
|
| 104 |
messages = [
|
| 105 |
{"role": "system", "content": system_prompt},
|
| 106 |
+
{"role": "user", "content": f" {summary} {user_query}" if summary else user_query}
|
| 107 |
]
|
|
|
|
| 108 |
text = tokenizer.apply_chat_template(
|
| 109 |
messages,
|
| 110 |
tokenize=False,
|
| 111 |
add_generation_prompt=True,
|
| 112 |
enable_thinking=enable_thinking
|
| 113 |
)
|
|
|
|
| 114 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 115 |
generated_ids = model.generate(
|
| 116 |
**model_inputs,
|
| 117 |
+
max_new_tokens=30, # Reduced for speed
|
| 118 |
temperature=0.6,
|
| 119 |
top_p=0.95,
|
| 120 |
repetition_penalty=1.0,
|
| 121 |
do_sample=False,
|
| 122 |
+
early_stopping=True # Stop early for efficiency
|
| 123 |
)
|
|
|
|
| 124 |
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):]
|
| 125 |
response = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 126 |
return response.strip()
|
|
|
|
| 127 |
# Gradio interface
|
| 128 |
def chat(user_input, history):
|
| 129 |
response = generate_response(user_input)
|
| 130 |
history.append((user_input, response))
|
| 131 |
return history, ""
|
|
|
|
| 132 |
with gr.Blocks() as demo:
|
| 133 |
gr.Markdown("# FinChat: AI-Powered Financial Advisor")
|
| 134 |
chatbot = gr.Chatbot()
|
| 135 |
msg = gr.Textbox(placeholder="Ask about stocks, investments, etc.")
|
| 136 |
clear = gr.Button("Clear")
|
|
|
|
| 137 |
msg.submit(chat, [msg, chatbot], [chatbot, msg])
|
| 138 |
clear.click(lambda: None, None, chatbot, queue=False)
|
|
|
|
| 139 |
demo.launch()
|