File size: 5,696 Bytes
75c3526
 
 
a0c1901
75c3526
25a1d3e
75c3526
 
f7cc8c3
75c3526
 
 
9d7f426
75c3526
 
 
 
 
 
ff3b207
75c3526
 
 
 
 
 
9d7f426
75c3526
 
9d7f426
75c3526
 
 
 
 
f7cc8c3
75c3526
 
dbf541c
75c3526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d75aba
75c3526
f3373ab
75c3526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1afd5f4
 
75c3526
 
 
 
 
f3373ab
75c3526
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from cleanlab_tlm import TLM  # Added for Cleanlab integration

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Llama-2 7B Chat
This Space demonstrates model [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, a Llama 2 model with 7B parameters fine-tuned for chat instructions. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).
🔎 For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
🔨 Looking for an even more powerful model? Check out the [13B version](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat) or the large [70B model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI).
"""

LICENSE = """
<p/>
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

if torch.cuda.is_available():
    model_id = "meta-llama/Llama-2-7b-chat-hf"
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False

# Initialize Cleanlab TLM (requires CLEANLAB_TLM_API_KEY environment variable)
tlm = TLM()

@spaces.GPU
def generate(
    message: str,
    chat_history: list[dict],
    system_prompt: str = "",
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    conversation += chat_history
    conversation.append({"role": "user", "content": message})
    
    # Construct full prompt for scoring
    full_prompt = tokenizer.apply_chat_template(conversation, tokenize=False)
    
    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)
    
    # After streaming completes, score the full response with Cleanlab TLM
    full_response = "".join(outputs)
    score_output = tlm.get_trustworthiness_score(full_prompt, response=full_response)
    trustworthiness_score = score_output["trustworthiness_score"]
    
    # Flag if score is low (threshold can be adjusted)
    if trustworthiness_score < 0.5:
        yield "\n\n**Flagged as potentially incorrect (Trustworthiness score: {:.2f}).** Please verify or rephrase your query.".format(trustworthiness_score)
    else:
        yield "\n\n(Trustworthiness score: {:.2f})".format(trustworthiness_score)

chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        {"text": "Hello there! How are you doing?"},
        {"text": "What is 2+2?"},
        {"text": "Please explain Machine Learning in 2-4 sentences."},
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue().launch()