|
|
|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from torch import nn |
|
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM |
|
from pathlib import Path |
|
import torch |
|
import torch.amp.autocast_mode |
|
from PIL import Image |
|
import os |
|
|
|
|
|
CLIP_PATH = "google/siglip-so400m-patch14-384" |
|
VLM_PROMPT = "A descriptive caption for this image:\n" |
|
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B" |
|
CHECKPOINT_PATH = Path("wpkklhc6") |
|
TITLE = "<h1><center>JoyCaption Pre-Alpha (2024-07-30a)</center></h1>" |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
|
|
class ImageAdapter(nn.Module): |
|
def __init__(self, input_features: int, output_features: int): |
|
super().__init__() |
|
self.linear1 = nn.Linear(input_features, output_features) |
|
self.activation = nn.GELU() |
|
self.linear2 = nn.Linear(output_features, output_features) |
|
|
|
def forward(self, vision_outputs: torch.Tensor): |
|
x = self.linear1(vision_outputs) |
|
x = self.activation(x) |
|
x = self.linear2(x) |
|
return x |
|
|
|
|
|
|
|
print("Loading CLIP") |
|
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) |
|
clip_model = AutoModel.from_pretrained(CLIP_PATH) |
|
clip_model = clip_model.vision_model |
|
clip_model.eval() |
|
clip_model.requires_grad_(False) |
|
clip_model.to("cuda") |
|
|
|
|
|
|
|
print("Loading tokenizer") |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False) |
|
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}" |
|
|
|
|
|
print("Loading LLM") |
|
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16) |
|
text_model.eval() |
|
|
|
|
|
print("Loading image adapter") |
|
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size) |
|
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")) |
|
image_adapter.eval() |
|
image_adapter.to("cuda") |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def stream_chat(input_image: Image.Image): |
|
torch.cuda.empty_cache() |
|
|
|
|
|
image = clip_processor(images=input_image, return_tensors='pt').pixel_values |
|
image = image.to('cuda') |
|
|
|
|
|
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False) |
|
|
|
|
|
with torch.amp.autocast_mode.autocast('cuda', enabled=True): |
|
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True) |
|
image_features = vision_outputs.hidden_states[-2] |
|
embedded_images = image_adapter(image_features) |
|
embedded_images = embedded_images.to('cuda') |
|
|
|
|
|
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda')) |
|
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}" |
|
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)) |
|
|
|
|
|
inputs_embeds = torch.cat([ |
|
embedded_bos.expand(embedded_images.shape[0], -1, -1), |
|
embedded_images.to(dtype=embedded_bos.dtype), |
|
prompt_embeds.expand(embedded_images.shape[0], -1, -1), |
|
], dim=1) |
|
|
|
input_ids = torch.cat([ |
|
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long), |
|
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), |
|
prompt, |
|
], dim=1).to('cuda') |
|
attention_mask = torch.ones_like(input_ids) |
|
|
|
|
|
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None) |
|
|
|
|
|
generate_ids = generate_ids[:, input_ids.shape[1]:] |
|
if generate_ids[0][-1] == tokenizer.eos_token_id: |
|
generate_ids = generate_ids[:, :-1] |
|
|
|
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] |
|
|
|
return caption.strip() |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML(TITLE) |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(type="pil", label="Input Image") |
|
run_button = gr.Button("Caption") |
|
|
|
with gr.Column(): |
|
output_caption = gr.Textbox(label="Caption") |
|
|
|
run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption]) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |