Spaces:
Runtime error
Runtime error
File size: 903 Bytes
51202ff 94d3f57 51202ff 94d3f57 60b634d 94d3f57 ec3846b 60b634d 51202ff 94d3f57 51202ff 60b634d 94d3f57 51202ff 60b634d 94d3f57 51202ff 94d3f57 60b634d 51202ff 60b634d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import gradio as gr
import torch
model_id = "AmiyendraOP/llama3-legal-finetuned"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float32)
# Set device
device = 0 if torch.cuda.is_available() else -1
# Use the text-generation pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
# Define a chat function
def chat(prompt):
response = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7)[0]["generated_text"]
return response
# Launch Gradio app
gr.Interface(
fn=chat,
inputs=gr.Textbox(lines=4, placeholder="Enter legal question...", label="Your Question"),
outputs=gr.Textbox(label="Response"),
title="LLaMA 3 Legal Chatbot (Fine-tuned)"
).launch()
|