Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from peft import PeftModel
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
base_model_id = "unsloth/llama-3-8b-bnb-4bit"
|
7 |
+
adapter_model_id = "Amiyendra/llama3-legal-assistant"
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
10 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
base_model_id,
|
12 |
+
device_map="auto",
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
model = PeftModel.from_pretrained(base_model, adapter_model_id)
|
18 |
+
model.eval()
|
19 |
+
|
20 |
+
|
21 |
+
def generate(prompt):
|
22 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
25 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
+
|
27 |
+
|
28 |
+
gr.Interface(fn=generate, inputs="text", outputs="text", title="LLaMA 3 Legal Assistant").launch()
|