import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch import os from huggingface_hub import login hf_token = os.getenv("HF_TOKEN") # Get token from environment variable login(hf_token) # Load your model and tokenizer model_name = "Amir230703/phi3-medmcqa-finetuned" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") # Define function for inference def generate_response(prompt): input_ids = tokenizer(prompt, return_tensors="pt").input_ids with torch.no_grad(): output = model.generate(input_ids, max_length=200) return tokenizer.decode(output[0], skip_special_tokens=True) # Create Gradio UI iface = gr.Interface( fn=generate_response, inputs="text", outputs="text", title="Medical QA Model", description="Enter a medical question, and the AI will provide an answer." ) iface.launch()