Amir230703 commited on
Commit
6e7b3e8
Β·
verified Β·
1 Parent(s): 2992385

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -11
app.py CHANGED
@@ -1,19 +1,30 @@
 
1
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
2
 
 
3
  model_name = "Amir230703/phi3-medmcqa-finetuned"
4
  tokenizer = AutoTokenizer.from_pretrained(model_name)
5
- model = AutoModelForCausalLM.from_pretrained(model_name)
6
 
7
- input_text = "What are the symptoms of the flu?"
8
- input_ids = tokenizer(input_text, return_tensors="pt").input_ids
 
 
 
 
 
 
 
 
9
 
10
- output = model.generate(
11
- input_ids,
12
- max_length=200,
13
- temperature=0.7, # Controls randomness
14
- top_p=0.9, # Nucleus sampling
15
- do_sample=True # Enables variability
 
16
  )
17
 
18
- generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
19
- print(generated_text)
 
1
+ import gradio as gr
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
 
5
+ # Load the model and tokenizer
6
  model_name = "Amir230703/phi3-medmcqa-finetuned"
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
9
 
10
+ def generate_answer(question):
11
+ input_ids = tokenizer(question, return_tensors="pt").input_ids.to(model.device)
12
+ output = model.generate(
13
+ input_ids,
14
+ max_length=200,
15
+ temperature=0.7, # Controls randomness
16
+ top_p=0.9, # Nucleus sampling
17
+ do_sample=True # Enables variability
18
+ )
19
+ return tokenizer.decode(output[0], skip_special_tokens=True)
20
 
21
+ # Gradio Interface
22
+ demo = gr.Interface(
23
+ fn=generate_answer,
24
+ inputs=gr.Textbox(placeholder="Enter a medical question here..."),
25
+ outputs=gr.Textbox(),
26
+ title="Medical QA Model",
27
+ description="Enter a medical question, and the AI will provide an answer."
28
  )
29
 
30
+ demo.launch()