Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,38 @@
|
|
1 |
-
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
4 |
|
5 |
-
#
|
6 |
model_name = "Amir230703/phi3-medmcqa-finetuned"
|
7 |
-
|
8 |
-
# Load tokenizer and model
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(
|
11 |
-
model_name,
|
12 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, # Use float16 for speed if GPU available
|
13 |
-
device_map="auto" # Moves model to GPU if available
|
14 |
-
)
|
15 |
-
|
16 |
-
# Function for generating responses
|
17 |
-
def generate_response(input_text):
|
18 |
-
try:
|
19 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(model.device)
|
20 |
-
|
21 |
-
output = model.generate(
|
22 |
-
input_ids,
|
23 |
-
max_length=200,
|
24 |
-
temperature=0.7,
|
25 |
-
top_p=0.9,
|
26 |
-
do_sample=True
|
27 |
-
)
|
28 |
-
|
29 |
-
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
30 |
-
return generated_text
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
#
|
36 |
demo = gr.Interface(
|
37 |
-
fn=
|
38 |
-
inputs=gr.Textbox(placeholder="Enter a medical question..."),
|
39 |
outputs=gr.Textbox(),
|
40 |
title="Medical QA Model",
|
41 |
-
description="Enter a medical question, and the AI will provide an answer."
|
42 |
)
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load the model and tokenizer
|
6 |
model_name = "Amir230703/phi3-medmcqa-finetuned"
|
|
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
def generate_answer(question):
|
11 |
+
# Tokenize the input question
|
12 |
+
input_ids = tokenizer(question, return_tensors="pt").input_ids.to(model.device)
|
13 |
+
|
14 |
+
# Generate the answer
|
15 |
+
output = model.generate(
|
16 |
+
input_ids,
|
17 |
+
max_length=100, # Reduced max_length for faster response
|
18 |
+
temperature=0.7,
|
19 |
+
top_p=0.9,
|
20 |
+
do_sample=True,
|
21 |
+
num_return_sequences=1 # Only return one answer
|
22 |
+
)
|
23 |
+
|
24 |
+
# Decode the output
|
25 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
26 |
+
return answer
|
27 |
|
28 |
+
# Gradio Interface
|
29 |
demo = gr.Interface(
|
30 |
+
fn=generate_answer,
|
31 |
+
inputs=gr.Textbox(placeholder="Enter a medical question here..."),
|
32 |
outputs=gr.Textbox(),
|
33 |
title="Medical QA Model",
|
34 |
+
description="Enter a medical question, and the AI will provide an answer."
|
35 |
)
|
36 |
|
37 |
+
# Launch the Gradio app
|
38 |
+
demo.launch()
|
|