Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load model and tokenizer with optimizations | |
model_name = "Amir230703/phi3-medmcqa-finetuned" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
attn_implementation="flash_attention_2" # Faster attention | |
).eval() | |
# Use faster kernels if available | |
if torch.cuda.is_available(): | |
model = torch.compile(model) | |
def generate_answer(question): | |
# Create structured prompt | |
prompt = f"""Instruction: Answer the following medical question concisely. | |
Question: {question} | |
Answer:""" | |
# Tokenize with optimized settings | |
inputs = tokenizer( | |
prompt, | |
return_tensors="pt", | |
max_length=512, | |
truncation=True, | |
padding=True | |
).to(model.device) | |
# Generate with optimized parameters | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=150, # Reduced from 200 | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True, | |
repetition_penalty=1.1, # Prevent repetition | |
num_return_sequences=1 | |
) | |
# Decode and clean output | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return answer.split("Answer:")[-1].strip() | |
# Gradio interface with queueing | |
demo = gr.Interface( | |
fn=generate_answer, | |
inputs=gr.Textbox(placeholder="Enter your medical question...", lines=3), | |
outputs=gr.Textbox(label="Answer"), | |
title="Medical QA Assistant", | |
description="AI-powered medical question answering. Please be specific in your queries.", | |
allow_flagging="never" | |
) | |
# Launch with performance settings | |
demo.launch( | |
server_name="0.0.0.0" if torch.cuda.is_available() else None, | |
share=False, | |
max_threads=2 | |
) |