import os from threading import Thread from typing import Iterator, List, Dict, Any import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, Conversation, pipeline MAX_MAX_NEW_TOKENS = 1024 DEFAULT_MAX_NEW_TOKENS = 256 MAX_INPUT_TOKEN_LENGTH = 512 DESCRIPTION = """\ # Buzz-3B-Small This Space demonstrates Buzz-3b-small-v0.6.3. """ LICENSE = """
--- Chat with Buzz-small! only 3b, this demo runs on the fp8 weights of the model in pytorch format, its brains are probably significantly damaged, converting to cpp soon, dont worry! """ device = 0 if torch.cuda.is_available() else -1 model_id = "H-D-T/Buzz-3b-small-v0.6.3" chatbot = pipeline(model=model_id, device=device, task="conversational",model_kwargs={"load_in_8bit": True}) tokenizer = AutoTokenizer.from_pretrained(model_id) bos_token = "<|begin_of_text|>" eos_token = "<|eot_id|>" start_header_id = "<|start_header_id|>" end_header_id = "<|end_header_id|>" if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id model.config.pad_token_id = tokenizer.eos_token_id def format_conversation(chat_history: List[Dict[str, str]], add_generation_prompt=False) -> str: """ Formats the chat history according to the model's chat template. """ formatted_history = [] for i, message in enumerate(chat_history): role, content = message["role"], message["content"] formatted_message = f"{start_header_id}{role}{end_header_id}\n\n{content.strip()}{eos_token}" if i == 0: formatted_message = bos_token + formatted_message formatted_history.append(formatted_message) if add_generation_prompt: formatted_history.append(f"{start_header_id}assistant{end_header_id}\n\n") else: formatted_history.append(eos_token) return "".join(formatted_history) @spaces.GPU def generate( message: str, chat_history: List[Dict[str, str]], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.4, ) -> Iterator[str]: chat_history.append({"role": "user", "content": message}) chat_context = format_conversation(chat_history, add_generation_prompt=True) input_ids = tokenizer([chat_context], return_tensors="pt").input_ids if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, pad_token_id=tokenizer.eos_token_id, repetition_penalty=repetition_penalty, no_repeat_ngram_size=5, early_stopping=False, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.4, ), ], stop_btn=None, examples=[ ["A recipe for a chocolate cake:"], ["Can you explain briefly to me what is the Python programming language?"], ["Explain the plot of Cinderella in a sentence."], ["Question: What is the capital of France?\nAnswer:"], ["Question: I am very tired, what should I do?\nAnswer:"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()