import streamlit as st import pandas as pd import numpy as np # Function to load data and replace missing values @st.cache def load_data(): # Load your data here, assuming 'recent_grads' is your DataFrame # Replace 'your_data.csv' with your actual data file recent_grads = pd.read_csv('your_data.csv') # List of columns needing correction columns_to_correct = ['column1', 'column2', 'column3'] # Replace these with your columns # Replace 'UN' with NaN in specified columns for column in columns_to_correct: recent_grads.loc[recent_grads[column] == 'UN', column] = np.nan return recent_grads def main(): st.title('Data Handling with Streamlit') # Load data data = load_data() # Show the loaded data in Streamlit st.write("Original Data:") st.write(data) if __name__ == "__main__": main()