Spaces:
Runtime error
Runtime error
Commit
·
da528de
1
Parent(s):
1872364
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,82 +1,32 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
def greet(name):
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# Import pandas
|
| 11 |
import pandas as pd
|
| 12 |
-
|
| 13 |
-
# Use pandas to read in recent_grads_url
|
| 14 |
-
recent_grads = pd.read_csv("/content/recent_grads.csv")
|
| 15 |
-
|
| 16 |
-
# Print the shape
|
| 17 |
-
print(recent_grads.shape)
|
| 18 |
-
|
| 19 |
-
from google.colab import drive
|
| 20 |
-
drive.mount('/content/drive')
|
| 21 |
-
|
| 22 |
-
# Print .dtypes
|
| 23 |
-
print(recent_grads.dtypes)
|
| 24 |
-
|
| 25 |
-
# Output summary statistics
|
| 26 |
-
print(recent_grads.describe())
|
| 27 |
-
|
| 28 |
-
# Exclude data of type object
|
| 29 |
-
print(recent_grads.describe(exclude=["object"]))
|
| 30 |
-
|
| 31 |
-
# Names of the columns we're searching for missing values
|
| 32 |
-
columns = ['median', 'p25th', 'p75th']
|
| 33 |
-
|
| 34 |
-
# Take a look at the dtypes
|
| 35 |
-
print(recent_grads[columns].dtypes)
|
| 36 |
-
|
| 37 |
-
# Find how missing values are represented
|
| 38 |
-
print(recent_grads["median"].unique())
|
| 39 |
-
|
| 40 |
-
# Replace missing values with NaN
|
| 41 |
-
for column in columns:
|
| 42 |
-
recent_grads.loc[recent_grads[column] == 'UN', column] = np.nan
|
| 43 |
-
|
| 44 |
import numpy as np
|
| 45 |
-
import pandas as pd
|
| 46 |
|
| 47 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
#
|
| 50 |
-
|
| 51 |
-
recent_grads.loc[recent_grads[column] == 'UN', column] = np.nan
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
print(sw_col.head())
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
# Use max to output maximum values
|
| 63 |
-
max_sw = recent_grads['sharewomen'].max()
|
| 64 |
-
|
| 65 |
-
# Print column max
|
| 66 |
-
print(max_sw)
|
| 67 |
-
|
| 68 |
-
# Output the row containing the maximum percentage of women
|
| 69 |
-
#print(sw_col)
|
| 70 |
-
print(recent_grads[(recent_grads['sharewomen']==max_sw)])
|
| 71 |
-
|
| 72 |
-
# Convert to numpy array
|
| 73 |
-
import numpy as np
|
| 74 |
-
recent_grads_np=np.array(recent_grads[['unemployed', 'low_wage_jobs']])
|
| 75 |
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
|
|
|
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
iface.launch()
|
|
|
|
| 1 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
|
| 5 |
+
# Function to load data and replace missing values
|
| 6 |
+
@st.cache
|
| 7 |
+
def load_data():
|
| 8 |
+
# Load your data here, assuming 'recent_grads' is your DataFrame
|
| 9 |
+
# Replace 'your_data.csv' with your actual data file
|
| 10 |
+
recent_grads = pd.read_csv('your_data.csv')
|
| 11 |
|
| 12 |
+
# List of columns needing correction
|
| 13 |
+
columns_to_correct = ['column1', 'column2', 'column3'] # Replace these with your columns
|
|
|
|
| 14 |
|
| 15 |
+
# Replace 'UN' with NaN in specified columns
|
| 16 |
+
for column in columns_to_correct:
|
| 17 |
+
recent_grads.loc[recent_grads[column] == 'UN', column] = np.nan
|
| 18 |
|
| 19 |
+
return recent_grads
|
|
|
|
| 20 |
|
| 21 |
+
def main():
|
| 22 |
+
st.title('Data Handling with Streamlit')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
# Load data
|
| 25 |
+
data = load_data()
|
| 26 |
|
| 27 |
+
# Show the loaded data in Streamlit
|
| 28 |
+
st.write("Original Data:")
|
| 29 |
+
st.write(data)
|
| 30 |
|
| 31 |
+
if __name__ == "__main__":
|
| 32 |
+
main()
|
|
|