Spaces:
Runtime error
Runtime error
AliUsama98
commited on
Commit
•
27900ad
1
Parent(s):
e474dfc
Upload summarizingdata.py
Browse files- summarizingdata.py +80 -0
summarizingdata.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""SummarizingData.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1Wo7aUHTjFTRVpiK4efjRHI2gsA6fRip5
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Import pandas
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
# Use pandas to read in recent_grads_url
|
14 |
+
recent_grads = pd.read_csv("/content/recent_grads.csv")
|
15 |
+
|
16 |
+
# Print the shape
|
17 |
+
print(recent_grads.shape)
|
18 |
+
|
19 |
+
from google.colab import drive
|
20 |
+
drive.mount('/content/drive')
|
21 |
+
|
22 |
+
# Print .dtypes
|
23 |
+
print(recent_grads.dtypes)
|
24 |
+
|
25 |
+
# Output summary statistics
|
26 |
+
print(recent_grads.describe())
|
27 |
+
|
28 |
+
# Exclude data of type object
|
29 |
+
print(recent_grads.describe(exclude=["object"]))
|
30 |
+
|
31 |
+
# Names of the columns we're searching for missing values
|
32 |
+
columns = ['median', 'p25th', 'p75th']
|
33 |
+
|
34 |
+
# Take a look at the dtypes
|
35 |
+
print(recent_grads[columns].dtypes)
|
36 |
+
|
37 |
+
# Find how missing values are represented
|
38 |
+
print(recent_grads["median"].unique())
|
39 |
+
|
40 |
+
# Replace missing values with NaN
|
41 |
+
for column in columns:
|
42 |
+
recent_grads.loc[recent_grads[column] == 'UN', column] = np.nan
|
43 |
+
|
44 |
+
import numpy as np
|
45 |
+
import pandas as pd
|
46 |
+
|
47 |
+
# Assuming 'recent_grads' is your DataFrame and 'columns' is a list of columns needing correction
|
48 |
+
|
49 |
+
# Replace missing values with NaN
|
50 |
+
for column in columns:
|
51 |
+
recent_grads.loc[recent_grads[column] == 'UN', column] = np.nan
|
52 |
+
|
53 |
+
# Select sharewomen column
|
54 |
+
sw_col = recent_grads['sharewomen']
|
55 |
+
|
56 |
+
# Output first five rows
|
57 |
+
print(sw_col.head())
|
58 |
+
|
59 |
+
# Import numpy
|
60 |
+
import numpy as np
|
61 |
+
|
62 |
+
# Use max to output maximum values
|
63 |
+
max_sw = recent_grads['sharewomen'].max()
|
64 |
+
|
65 |
+
# Print column max
|
66 |
+
print(max_sw)
|
67 |
+
|
68 |
+
# Output the row containing the maximum percentage of women
|
69 |
+
#print(sw_col)
|
70 |
+
print(recent_grads[(recent_grads['sharewomen']==max_sw)])
|
71 |
+
|
72 |
+
# Convert to numpy array
|
73 |
+
import numpy as np
|
74 |
+
recent_grads_np=np.array(recent_grads[['unemployed', 'low_wage_jobs']])
|
75 |
+
|
76 |
+
|
77 |
+
# Print the type of recent_grads_np
|
78 |
+
print(type(recent_grads_np))
|
79 |
+
|
80 |
+
print(np.corrcoef(recent_grads_np[:,0], recent_grads_np[:,1]))
|