Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import random
|
4 |
-
import requests
|
5 |
-
import os
|
6 |
from torchvision import transforms
|
7 |
from PIL import Image
|
|
|
|
|
8 |
|
|
|
9 |
REPO_ID = "Alhdrawi/x_alhdrawi"
|
|
|
|
|
10 |
MODEL_FILES = [
|
11 |
"best_128_0.0002_original_15000_0.859.pt",
|
12 |
"best_128_0.0002_original_8000_0.857.pt",
|
@@ -20,44 +23,64 @@ MODEL_FILES = [
|
|
20 |
"best_64_5e-05_original_22000_0.864.pt",
|
21 |
]
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
diseases = [
|
24 |
"Atelectasis", "Cardiomegaly", "Consolidation", "Edema", "Effusion",
|
25 |
"Emphysema", "Fibrosis", "Hernia", "Infiltration", "Mass", "Nodule",
|
26 |
"Pleural_Thickening", "Pneumonia", "Pneumothorax"
|
27 |
]
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
model = None
|
37 |
-
|
38 |
|
39 |
-
def
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
if not os.path.exists(local_path):
|
43 |
print(f"Downloading model from {url}")
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
def load_model(_):
|
50 |
-
global model, current_model_path
|
51 |
-
selected_model = random.choice(MODEL_FILES)
|
52 |
-
local_path = download_model_file(selected_model)
|
53 |
-
model = torch.load(local_path, map_location=device)
|
54 |
model.eval()
|
55 |
-
|
56 |
-
return f"تم تحميل النموذج العشوائي: {selected_model}"
|
57 |
|
58 |
def predict(image):
|
59 |
if model is None:
|
60 |
-
return "
|
61 |
img = transform(image.convert("L")).unsqueeze(0).to(device)
|
62 |
with torch.no_grad():
|
63 |
outputs = model(img)
|
@@ -65,16 +88,15 @@ def predict(image):
|
|
65 |
results = {d: round(float(p), 3) for d, p in zip(diseases, probs)}
|
66 |
return results
|
67 |
|
|
|
|
|
|
|
68 |
with gr.Blocks() as demo:
|
69 |
-
gr.Markdown("## 🧠 CheXzero |
|
70 |
-
with gr.Row():
|
71 |
-
load_button = gr.Button("تحميل نموذج عشوائي")
|
72 |
-
load_status = gr.Textbox(label="الحالة", interactive=False)
|
73 |
with gr.Row():
|
74 |
image_input = gr.Image(type="pil", label="صورة الأشعة")
|
75 |
output = gr.Label(num_top_classes=5)
|
76 |
|
77 |
-
load_button.click(fn=load_model, inputs=None, outputs=load_status)
|
78 |
image_input.change(fn=predict, inputs=image_input, outputs=output)
|
79 |
|
80 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import random
|
|
|
|
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
+
import urllib.request
|
7 |
+
import os
|
8 |
|
9 |
+
# اسم الريبو الخاص بك على Hugging Face
|
10 |
REPO_ID = "Alhdrawi/x_alhdrawi"
|
11 |
+
|
12 |
+
# أسماء الملفات المرفوعة
|
13 |
MODEL_FILES = [
|
14 |
"best_128_0.0002_original_15000_0.859.pt",
|
15 |
"best_128_0.0002_original_8000_0.857.pt",
|
|
|
23 |
"best_64_5e-05_original_22000_0.864.pt",
|
24 |
]
|
25 |
|
26 |
+
# نفس المعالجة المستخدمة
|
27 |
+
transform = transforms.Compose([
|
28 |
+
transforms.Resize((224, 224)),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize(mean=[0.485], std=[0.229])
|
31 |
+
])
|
32 |
+
|
33 |
+
# الأمراض اللي يشخصها
|
34 |
diseases = [
|
35 |
"Atelectasis", "Cardiomegaly", "Consolidation", "Edema", "Effusion",
|
36 |
"Emphysema", "Fibrosis", "Hernia", "Infiltration", "Mass", "Nodule",
|
37 |
"Pleural_Thickening", "Pneumonia", "Pneumothorax"
|
38 |
]
|
39 |
|
40 |
+
# تعرّف كلاس النموذج - لازم تعدله حسب المعمارية
|
41 |
+
import torch.nn as nn
|
42 |
+
|
43 |
+
class SimpleCNN(nn.Module): # عدل هذا الكلاس حسب اللي دربت عليه
|
44 |
+
def __init__(self, num_classes=14):
|
45 |
+
super(SimpleCNN, self).__init__()
|
46 |
+
self.features = nn.Sequential(
|
47 |
+
nn.Conv2d(1, 32, kernel_size=3, padding=1),
|
48 |
+
nn.ReLU(inplace=True),
|
49 |
+
nn.MaxPool2d(kernel_size=2),
|
50 |
+
nn.Conv2d(32, 64, kernel_size=3, padding=1),
|
51 |
+
nn.ReLU(inplace=True),
|
52 |
+
nn.AdaptiveAvgPool2d((1, 1))
|
53 |
+
)
|
54 |
+
self.classifier = nn.Linear(64, num_classes)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
x = self.features(x)
|
58 |
+
x = x.view(x.size(0), -1)
|
59 |
+
x = self.classifier(x)
|
60 |
+
return x
|
61 |
|
62 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
63 |
model = None
|
64 |
+
selected_model_file = random.choice(MODEL_FILES)
|
65 |
|
66 |
+
def download_and_load_model():
|
67 |
+
global model
|
68 |
+
url = f"https://huggingface.co/{REPO_ID}/resolve/main/{selected_model_file}"
|
69 |
+
local_path = f"/tmp/{selected_model_file}"
|
70 |
+
|
71 |
if not os.path.exists(local_path):
|
72 |
print(f"Downloading model from {url}")
|
73 |
+
urllib.request.urlretrieve(url, local_path)
|
74 |
+
|
75 |
+
model = SimpleCNN(num_classes=len(diseases)).to(device)
|
76 |
+
state_dict = torch.load(local_path, map_location=device)
|
77 |
+
model.load_state_dict(state_dict)
|
|
|
|
|
|
|
|
|
|
|
78 |
model.eval()
|
79 |
+
print(f"✅ Model loaded: {selected_model_file}")
|
|
|
80 |
|
81 |
def predict(image):
|
82 |
if model is None:
|
83 |
+
return "النموذج غير محمّل"
|
84 |
img = transform(image.convert("L")).unsqueeze(0).to(device)
|
85 |
with torch.no_grad():
|
86 |
outputs = model(img)
|
|
|
88 |
results = {d: round(float(p), 3) for d, p in zip(diseases, probs)}
|
89 |
return results
|
90 |
|
91 |
+
# تحميل النموذج تلقائيًا عند بداية التشغيل
|
92 |
+
download_and_load_model()
|
93 |
+
|
94 |
with gr.Blocks() as demo:
|
95 |
+
gr.Markdown(f"## 🧠 CheXzero | النموذج العشوائي المحمّل: `{selected_model_file}`")
|
|
|
|
|
|
|
96 |
with gr.Row():
|
97 |
image_input = gr.Image(type="pil", label="صورة الأشعة")
|
98 |
output = gr.Label(num_top_classes=5)
|
99 |
|
|
|
100 |
image_input.change(fn=predict, inputs=image_input, outputs=output)
|
101 |
|
102 |
demo.launch()
|