import gradio as gr from huggingface_hub import InferenceClient import os API_TOKEN = os.getenv("HF_TOKEN") client = InferenceClient(token=API_TOKEN) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # بناء نص المحادثة كنص واحد مع أدوار واضحة conversation = f"System: {system_message}\n" for user_msg, assistant_msg in history: if user_msg: conversation += f"User: {user_msg}\n" if assistant_msg: conversation += f"Assistant: {assistant_msg}\n" conversation += f"User: {message}\nAssistant:" response = "" # استدعاء text_generation مع التدفق (stream=True) for output in client.text_generation( model="Alhdrawi/alhdrawi", prompt=conversation, # هنا تم التعديل max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ): # كل مرة يجي جزء جديد من النص new_text = output.generated_text[len(response):] response += new_text yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()